Are you applying to universities? | SHARE YOUR EXPERIENCE Are you applying to universities? | SHARE YOUR EXPERIENCE

Design and development of reliable electrode for high-performance hydrogen production under fluctuating power supply (Advert Reference: RDFC21-R4/EE/MCE/XUBen)

   Faculty of Engineering and Environment

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Prof Ben Xu  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

A key priority for the UK economy is the development of high-value and specialist manufacturing, especially in renewable energy, which strategically aligns to the UK’s commitment to the Net Zero, underpinned by research that is inherently multidisciplinary and disruptive. Electrolysis of water and the production of hydrogen could be a key element in future renewable energy economy providing a solution to the energy storage challenge. However, current technologies of water electrolysis are of either low efficiency or high cost, limited by multiple factors such as electrode failure, expensive catalysts, unstable power supply. By far, considerable effects have been paid with focus on scoping high performance electrode materials with low cost and constructing enhanced electrochemical water splitting devices. The electrolysis cell supported by micro-structural electrodes are particularly favourable since they avoid complicated fabrication and significant system costs. However, recent analysis has raised concerns that fluctuating power supply from renewable energy will accelerate the decay of the electrode. A novel electrochemical water splitting cell with enhanced electrode will enable a high level controllability to the process with capability to produce high quality hydrogen. 

This project aims to design and develop a reliable electrode technology for high-performance hydrogen production under fluctuating power supply, to achieve higher operating efficiency and sustainability. Particular objectives are:

1.    To scope and survey the electrode and water splitting device for hydrogen production

2.    To experimentally design and assess the electrode performance under fluctuating power supply

3.    To develop a model to understand the working principle of electrode performance under fluctuating power supply

4.    To assess the overall system efficiency by considering the life cycle analysis

Key skills used in research work packages are:  

1. Electrochemistry, Hydrogen energy synthesis  

2. Materials characterisation skills: SEM, AFM, Electrical testing Probe station, Profilometer, Ellipsometry, fluorescence microscopy, Laser confocal scanning microscopy  

3. Micro-engineering: Lithography, soft-lithography, RIE, CVDs, printing, packaging, integration, SAM, anodization/oxidation,  

4. Numerical/FEA simulation (Matlab, ABAQUS and/or Ansys, etc) 

The Principal Supervisor for this project is Professor Ben Xu.

Please note eligibility requirement:

·      Academic excellence of the proposed student i.e. 2:1 (or equivalent GPA from non-UK universities [preference for 1st class honours]); or a Masters (preference for Merit or above); or APEL evidence of substantial practitioner achievement.

·      Appropriate IELTS score, if required.

·      Applicants cannot apply for this funding if currently engaged in Doctoral study at Northumbria or elsewhere. 

For further details of how to apply, entry requirements and the application form, see  

Please note: Applications that do not include a research proposal of approximately 1,000 words (not a copy of the advert), or that do not include the advert reference (e.g. RDFC21-R4/ EE/MCE/XuBen) will not be considered.

Deadline for applications: 29 June 2022

Start Date: 1 October 2022

Northumbria University is an equal opportunities provider and in welcoming applications for studentships from all sectors of the community we strongly encourage applications from women and under-represented groups.

Funding Notes

The studentship is available to Home, EU and International Students and includes a full stipend, paid for 3 years at RCUK rates (for 2021/2, this is £15,609 p.a.) and full tuition fees.
* Please note that in order to be classed as Home Student, candidates must meet the following criteria:
- be a UK National (meeting residency requirements), or
- have settled status, or
- have pre-settled status (meeting residency requirements), or
- have indefinite leave to remain or enter.


Recent publications by supervisors relevant to this project (optional)
1. ‘Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films’, US Patent, 2018, No 10,138,542.
2. Book Chapter - ’2D Inorganic Nanomaterials for Conductive Polymer Nanocomposites’, in the book of ‘Two-dimensional Inorganic Nanomaterials for Conductive Polymer Nanocomposites (Inorganic Materials Series)’, Feb 2021, RSC publication.
3. 'Amino Acid-Induced Interface Charge Engineering Enables Highly Reversible Zn Anode', Advanced Functional Materials, 2021, DOI:10.1002/adfm.202103514
4. 'Ultrastretchable, highly transparent, self-adhesive, and 3D-printable ionic hydrogel for multimode tactical sensing', Chemistry of Materials,2021, DOI: 10.1021/acs.chemmater.1c01246
5. 'Fibre Surface/Interfacial Engineering on Wearable Electronics', Small, 2021, DOI: 10.1002/smll.202102903
6. Dendrite-free zinc anode enabled by zinc-chelating chemistry, Energy Storage Materials,2021,
7. 'Porous Bilayer Electrode Guided Gas Diffusion for Enhanced CO2 Electrochemical Reduction', Advanced Energy and Sustainability Research, 2021,
8. 'Conversion-Alloying Anode Materials for Sodium Ion Batteries', Small, 2021,
9. 'Interface Engineering of Air Electrocatalysts for Rechargeable Zinc-Air Batteries', Advanced Energy Materials, 2021,
10. 'Ultraelastic Yarns from Curcumin-assisted ELD towards Wearable Human-Machine Interface Textiles', Advanced Science, 2021,
11. 'A Robust, Highly Reversible, Mixed Conducting Sodium Metal Anode', Science Bulletin. 2021,
12. A Highly Controlled Fabrication of Porous Anodic Aluminium Oxide Surface with Versatile Features by Spatial Thermo-anodization, Surface & Coatings Technology, 2021, 408, DOI:10.1016/j.surfcoat.2020.126809
13. 'A Flexible Topo-optical Sensing Technology with Ultra-high Contrast', Nature Communications, 2020, vol. 11, 1448.
14. 'A Nature-Inspired, Flexible Substrate Strategy for Future Wearable Electronics', Small, 2020, vol. 15, 1902440.
15. ‘A Facile Surface Preservation Strategy for the Lithium Anode for High-Performance Li–O2 Batteries’, ACS applied materials & interfaces, 2020, 12 (24), 27316-27326.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs