Designing a simple section method to acquire large volume 3D microstructure of additively manufactured light alloys


   Faculty of Engineering and Physical Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Dikai Guan  No more applications being accepted  Self-Funded PhD Students Only

About the Project

Supervisory Team:   Dikai Guan

Project description

The microstructure evolution of alloys during additive manufacturing is expected to be complex and some feature sizes could range from tens of nanometers up to several hundreds of microns that need to be mapped in 3D. 2D microstructure information is insufficient to understand and develop models of the fundamental mechanisms that determine the properties of the alloys. Thus a combination of EBSD and Focused Ion Beam (FIB) milling is conventionally used to access 3D information. However, long milling times of Ga source FIBs have limited analysis volumes on the tens of micron dimensions, which cannot provide the required microstructure information. Even the most advanced Laser Plasma FIB only allows sample analysis just exceeding spatial dimensions of 1000 × 1000 × 500 µm³ with regular equipment time, which cannot provide typical microstructure information with grain size over 100 µm. Thus, developing a novel section method to acquire a large volume of 3D information using short equipment time with low cost is indispensable to analyse complex microstructures.

Our group has recently published several in-situ microstructure characterisation works in high quality journal papers [1-5]. These research outcomes enabled our group to win a UKRI Future Leaders Fellowship (https://gtr.ukri.org/projects?ref=MR%2FT019123%2F2). Our most recent work published in Acta Materialia used this section method to obtain a large volume of microstructure information and disclosed new insight into deformation mechanisms in alloys [5].

This project aims to fully explore the complex and unique microstructure of additively manufactured magnesium and aluminium alloys.

Three specific objectives are:

(1) Design novel etching/ polishing strategies to uniformly etch/remove sample surface, and control surface reduction rate and depth.

(2) Employ electron microscopy techniques to obtain data after serial sectioning and reconstruct the data in 3D using open-source software.

(3) Develop scripts to process the microstructure data efficiently and extract the key information automatically.

(4) Correlate the microstructure information with the mechanical property testing results

Besides standard PhD training, this project will provide training experience including 1) solid training in light alloy metallurgy, advanced electron microscope characterisation, large dataset processing and corrosion science, 2) collaboration opportunities with our industry partners and academic collaborators; 3) Personal career development training courses funded by supervisor’s fellowship project, (4) PGR demonstrator experience, this will allow you to earn extra £3,000-4,000 salary per year and also could be used to support you for applying for Associate Fellowship awarded by AdvanceHE.

References:

[1] doi.org/10.1016/j.actamat.2016.12.058

[2] doi.org/10.1016/j.actamat.2017.06.015

[3] doi.org/10.1016/j.actamat.2017.12.019

[4] doi.org/10.1016/j.actamat.2019.03.018

[5] doi.org/10.1016/j.actamat.2023.119043

Entry Requirements

At least a UK 2:1 honours degree, or its international equivalent.

Closing date: 31 August 2024. Applications will be considered in the order that they are received, the position will be considered filled when a suitable candidate has been identified.

Funding: Self-funding

How To Apply

Apply online: Search for a Postgraduate Programme of Study (soton.ac.uk). Select programme type (Research), 2024/25, Faculty of Engineering and Physical Sciences, next page select “PhD Engineering & Environment (Full time)”. In Section 2 of the application form you should insert the name of the supervisor Dikai Guan

Applications should include:

Research Proposal

Curriculum Vitae

Two reference letters

Degree Transcripts/Certificates to date

For further information please contact: [Email Address Removed], [Email Address Removed]


Chemistry (6) Engineering (12) Materials Science (24)

How good is research at University of Southampton in Engineering?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

 About the Project