or
Looking to list your PhD opportunities? Log in here.
Food texture is related to the way our senses perceive and feel the rheological and mechanical properties of edible substances. For example, a potato chip is crispy; an apple is crunchy; butter is soft; bread is firm; candy is hard; yogurt is smooth; cream is thick; cake is moist, and honey is sticky. Food texture is critical for the consumer and impacts on a product’s market share. It is affected by the composition, manufacturing process, storage conditions and aging. It impacts the final quality and nutrition value of the food product. Food industry strives to improve texture while enhancing the product’s nutritional value and health benefits. For example, healthy oleogels can be used in substitution of harmful trans/saturated fats while retaining the sense of a “mouthful” product.
Texture is complex to quantify, as it is the result of interplay of the food mechanical and rheological properties as physically sensed in the mouth. It is the result of the complex movement of chewing involving our jaws, teeth, and tongue, and the combined comminution (particle size distribution change) and gradual dissolution of substances in saliva.
This project aims to develop and combine mechanical and rheological testing methodologies that will characterize texture rapidly and reliably, in real time, during the manufacturing and storage period. The experimental program will be complemented by state-of-the-art artificial intelligence (AI) and machine learning (ML) methodologies in order to correlate improved texture with optimized manufacturing and storage processes.
The ideal candidate will combine strong experimental and computational skills, an interest in food science and engineering, mechanics, rheology and numerical methods/software (e.g., MATLAB, Python).
To Apply: https://www.eng.ed.ac.uk/studying/postgraduate/research/phd/developing-systematic-food-texture-characterisation-methodology
The university will respond to you directly. You will have a FindAPhD account to view your sent enquiries and receive email alerts with new PhD opportunities and guidance to help you choose the right programme.
Log in to save time sending your enquiry and view previously sent enquiries
The information you submit to University of Edinburgh will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Edinburgh, United Kingdom
Start a New search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
Developing Hydrogen Storage Materials Using Advanced Manufacturing Methods
University of Aberdeen
Mid-infrared hollow-core fibre and laser development for environmental monitoring, non-invasive surgery and advanced manufacturing
University of Southampton
Characterisation and Scale-up of Rotor-Stator Mixers for Sustainable Manufacturing
The University of Manchester