Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
Non-adherence to treatment costs the NHS more than £500M each year. Adherence is especially important when treating patients with chronic conditions that require lifetime pharmacological treatment, such as schizophrenia, Parkinson’s disease, HIV and Alzheimer’s disease. In addition to the economic impact, there is a direct human cost, as non-compliance significantly reduces patients’ health-related quality of life and, in many cases, is associated with early death. Non-adherence to treatment for schizophrenic patients increases the risk of relapse, hospitalisation and suicide (relapse costs £15,000/year/patient). Moreover, Parkinson’s or Alzheimer’s disease patients that do not adhere to treatment have higher risk of institutionalisation or hospitalisation, costing a total of up to £194M/year. Considering the economic and human impact of non-adherence to treatment, there is a clear need for drug delivery systems capable of providing unattended drug administration for prolonged periods of time for these conditions. Therefore, this PhD project seeks to develop long-acting drug delivery systems (LADDS) using biodegradable polymers for treatment of chronic conditions. These polymers will be formulated into a range of innovative types of LADDS. Pharmaceutical companies, charities and UK Research Councils all currently have LADDS development as a priority. Indeed, the QUB Drug Delivery Team has received extensive funding to develop and apply such systems. The Supervisory Team has been supported by EPSRC, Academy of Medical Sciences, Prostate Cancer UK the US NIH and USAID. Moreover, a range of leading pharmaceutical companies are currently funding research projects in our lab to develop LADDS. Accordingly, QUB has extensive experience in developing such systems. The interest of pharmaceutical companies in LADDS have risen significantly. Accordingly, this project will address not only a clear patient need, but also a growing commercial interest. This 3-year PhD project will be focused on delivery of two representative compounds: risperidone and tizanidine. The first drug is an antipsychotic drug used for the treatment of schizophrenia. The second compound is a centrally acting muscle relaxant used to treat spasticity in multiple sclerosis. The project will explore the use of several technologies, including 3D-printing, to develop solid implantable LADDS.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Belfast, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Development of biodegradable polymeric systems for drug delivery & tissue engineering applications (SAEEDA_U23SF)
University of East Anglia
Development of long-acting injectable (LAI) drug delivery systems to treat ocular diseases
Queen’s University Belfast
Developing novel formulations and materials for transmucosal drug delivery
University of Reading