Background: The ability to turn gene expression on and off is the founding principle the processes directing health and disease executed by large multi-protein machineries serving as repressors or activators. Identifying DNA interacting protein landscape has been critical for scientific progress and has facilitated wide reaching technological, agricultural and medical advances. This has largely been made possible thanks to the development of chromatin immunoprecipitation sequencing (ChIP-seq) methodology which revolutionised the field allowing scientists to identify all DNA bound to a protein of interest. However, ChIP-seq approach is protein centric and we currently lack technology to unbiasedly identify proteins bound to a DNA sequence of interest.
Objectives and Experimental Approaches: In this project you will develop a specific, standardised approach for the discovery of DNA binding proteins utilising the recent advances in Mass Spectrometry that provide high sensitivity. More importantly, our approach will be unbiased and, will not require prior knowledge of any regulatory binding sites for comparative analysis so that our technique may be used with any promoter or enhancer of interest. Furthermore, by employing different cell models we will be able to identify the interplay between repressing and promoting protein interactants on DNA sequences.
In this project you will apply the novel technology to answer a fundamental biological question; what regulates expression of meiotic synaptonemal complex genes at meiosis initiation and furthermore what controls their concerted and synchronised silencing across the genome after fertilisation and across somatic tissues. Consequently, this project will not only develop a new technology that will be made available to laboratories world-wide allowing the discovery of DNA protein-interactomes, but will also answer a fundamental biological question with implications for fertility, developmental biology and cancer.
Our interdisciplinary project will involve a unique breadth of training across three laboratories (see links below) with complementary approaches utilising our world-class facilities including cell biology, proteomics (https://www.liverpool.ac.uk/pfg/), genetics (https://www.liverpool.ac.uk/genomic-research/) and imaging techniques (https://cci.liv.ac.uk/); all providing training in quantitative skills. This project is suited to students who need flexible working arrangements. We invite, welcome and champion applications from minority backgrounds. A broad range of inter-disciplinary approaches will encourage innovative thinking and develop diverse technical expertise. Furthermore, this multi-disciplinary training will give the student a broad range of skills allowing them a wide choice of career options, both within and outside of academia, after the PhD.
In addition, the student will join our Molecular Physiology and Cell Signalling Department (https://www.liverpool.ac.uk/translational-medicine/departmentsandgroups/cellular-and-molecular-physiology/about/) as a member of a supportive team of PhD and Post-Doctoral scientists with similar interests, participating regularly in broad ranging group meetings and scientific symposia.
Primary Supervisor -
https://www.liverpool.ac.uk/integrative-biology/staff/urszula-mcclurg/
https://www.cilianetwork.org.uk/people/umcclurg
Secondary supervisors –
https://research.ncl.ac.uk/celldivisionbiology/people/staffprofilesuzannemadgwick.html
https://www.liverpool.ac.uk/integrative-biology/staff/claire-eyers/
Informal enquiries may be made to urszula.mcclurg@liverpool.ac.uk
HOW TO APPLY
Applications should be made by emailing bbsrcdtp@liverpool.ac.uk with a CV and a covering letter, including whatever additional information you feel is pertinent to your application; you may wish to indicate, for example, why you are particularly interested in the selected project/s and at the selected University. Applications not meeting these criteria will be rejected. We will also require electronic copies of your degree certificates and transcripts.
In addition to the CV and covering letter, please email a completed copy of the Application Details Form (Word document) to bbsrcdtp@liverpool.ac.uk, noting the additional details that are required for your application which are listed in this form. A blank copy of this form can be found at: https://www.nld-dtp.org.uk/how-apply.
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Liverpool, United Kingdom
Check out our other PhDs in Genetics
Start a new search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
PhD in Healthcare Technology Development using Biosensors: Novel Point-of-Care Lateral Flow Assay for Salivary Biomarkers
University of Liverpool
Understanding regulation of gene expression during development via an integrated computational analysis of ‘omics data
The University of Manchester
(BBSRC DTP) MicroRNA buffering of gene expression during development
The University of Manchester