Life-spans are increasing globally and the worldwide number of people with age-related dementia is expected to reach 75 million by 2030. Improving the early identification of people at risk of developing dementia is a major priority for the NHS, in order that interventions to slow or stop the disease can be started at an early stage. Dementia is also a priority research area at Manchester University where a pan-University organisation dementia@manchester has been established to bring together the extensive community of dementia researchers, clinicians and regional care providers.
This study will build on ongoing collaborative work at Manchester and at Goldsmiths, University of London, using large-scale datasets of electronic patient records and other data sources to identify patient factors associated with the development of dementia and to build predictive algorithms using cutting-edge statistical and machine-learning methods. Existing predictive models have demonstrated only modest performance and the goal is to substantially improve on these by making better use of the longitudinal historical information in the patient record and by combining health, genetic and possibly brain imaging data. The student will join a thriving multi-disciplinary group of researchers at Manchester working in the areas of statistics, predictive models, dementia and health informatics and will also be linked in with our collaborators at the Computing Department at Goldsmiths, led by Dr Daniel Stamate. Training in relevant methods will be provided.
At the end of the PhD you will have developed expertise in managing and analysing large-scale health databases, in advanced statistical and machine-learning techniques and their application to predictive modelling, and in the use of sophisticated statistical software packages such as Stata and R. You will also have developed skills in working within a multi-disciplinary team and in academic writing, presentation, and publishing.
Candidates are expected to hold (or be about to obtain) a minimum upper second class honours degree (or equivalent) in statistics or a related area. It would be an advantage for candidates to have experience of applying statistics or informatics in a health-related area.
For information on how to apply for this project, please visit the Faculty of Biology, Medicine and Health Doctoral Academy website (https://www.bmh.manchester.ac.uk/study/research/apply/). Informal enquiries may be made directly to the primary supervisor. On the online application form select PhD Bioinformatics.
For international students we also offer a unique 4 year PhD programme that gives you the opportunity to undertake an accredited Teaching Certificate whilst carrying out an independent research project across a range of biological, medical and health sciences. For more information please visit www.internationalphd.manchester.ac.uk
The information you submit to The University of Manchester will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Manchester, United Kingdom
Check out our other PhDs in Biotechnology
Start a new search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
Development of a monitoring and advice scheme to reduce exposure to home air pollutants among children and young people with high risk asthma
University of Strathclyde
Marie-Sklodowska Curie PROTrEIN-ITN Early Stage Researcher (PhD student) position: Development of computational approaches for high precision and accuracy protein quantification (CRG, Barcelona, Spain)
Centre for Genomic Regulation (CRG)
Development of novel macrophage high-throughput cell-based phenotypic assay for drug screening
Anglia Ruskin University ARU