Looking to list your PhD opportunities? Log in here.
About the Project
How can concrete materials (the most utilized material in the world) be additively manufactured to reduce the construction cost of nuclear energy facilities? How can we leverage modern cement chemistries to improve the neutron degradation of these materials? How does embedded steel reinforcement corrode in near-reactor environments? This project seeks to answer these questions by transforming the nuclear manufacturing cost curve of both traditional and advanced/small modular reactors through the development of additively manufactured concrete (AMC) structures that are functionally graded for ease of fabrication, novel irradiation shielding, thermal resistance, and environmental stability in both new construction and repair applications.
To accomplish this transformative goal, the primary aim of this project is to develop unique layer-by-layer additive manufacturing concrete technologies (3D printed concrete) with detailed assessments of their long-term degradation mechanisms when exposed to neutron and gamma irradiation – an imperative step towards the construction of AMC structures (e.g., bio-shields) with superior radiation stability. Specifically, this project extends upon cutting-edge advancements in neutron- and gamma-resistant concrete formulations to develop unique iron-rich limestone calcined clay cement (Fe-LC3) concretes to meet the primary aim. This project’s secondary aim is to employ advanced in-situ monitoring systems to understand the environmental material performance in reactor environments due to thermal (>300°C) and environmental (RH > 40%) conditions of AMC structures with embedded steel reinforcements. In situ monitoring results will begin to address the current lack of data regarding reactor environmental effects, such as coupled thermal-mechanical-moisture-radiation degradation of concrete or accelerated corrosion at steel-concrete interfaces, on AMC structures. This project will provide a first-of-its-kind database documenting the neutron and gamma irradiation degradation of the cement matrix, aggregates, and steel-concrete interface of AMC structures in reactor environments. These innovative results will advance programmatic efforts to develop materials and advance manufacturing technologies that can significantly reduce the cost of nuclear infrastructure while considering environmental effects; hence, directly supporting the continued operation of existing nuclear reactor designs and novel reactor designs as part of the Nuclear Energy Office mission.
The innovative aims of this scientific study will be accomplished with three main research phases, namely: (Phase I) material development and characterization of novel Fe-LC3 materials; (Phase II) functional-grading additive manufacturing of rheologically-compatible Fe-LC3 materials; (Phase III) neutron and gamma irradiation of Fe-LC3 AMC at the Breazeale Nuclear Reactor Facility; and, (Phase IV) in-reactor environmental performance of reinforced Fe-LC3 materials at PSU and PNNL facilities. These phases will leverage unique multi-disciplinary research facilities at the Pennsylvania State University, such as the Center for Quantitative Imaging – world-leading facilities for the characterization of time-based pore structure degradation mechanisms. Lastly, this research is supported by the Responsive and Adaptive Infrastructure Materials Laboratory - a unique cement chemistry laboratory for the in-depth characterization of new low-CO2 and sustainable cementitious materials - as well as the Materials Characterization Laboratory - world-renowned materials characterization multi-user facility with 50,000 square feet dedicated to current and future generations of characterization and fabrication tools.
Applying for this position:
If you are interested in this research for your Ph.D., we are looking for creative, curious, and gritty student researchers to join our team. Send the PI, Dr. Juan Pablo Gevaudan (e: jp.gevaudan@psu.edu), an email with your CV and a 1-2 page research interest statement where you explain your main research interests, your research approach, and how Penn State can help this research. Include a paragraph about how the envisioned Ph.D. project links to your vision, personal motivation, or career ambition. This will allow us to assess your research and professional development as well as the curiosity, critical thinking, and creativity that you will bring to our research group.
Funding Notes
Email Now
Why not add a message here
The information you submit to Pennsylvania State University - University Park will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Pittsburgh, USA
Check out our other PhDs in USA
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Materials and manufacturing for advanced indoor people tracking
Glasgow Caledonian University
Development of a responsive 3D printer for smart additive manufacturing
Kingston University
Design and synthesis of novel polymers for the additive manufacturing of biomedical devices
University of Reading