Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

London School of Hygiene & Tropical Medicine Featured PhD Programmes
University of Kent Featured PhD Programmes
University College London Featured PhD Programmes
University of Oxford Featured PhD Programmes
University College London Featured PhD Programmes

Development of integrated multi-modal sensors for monitoring brain activity


Project Description

Epilepsy is one of the most life-changing chronic conditions in the UK, affecting 1 among 100 persons at some point in their life. Information that could facilitate personalised monitoring and characterisation of this disease is an urgent, yet unmet, clinical need. The extraction of novel personalised brain activity markers in epilepsy, in the context of a better understanding of risk factors, could provide the basis for novel future interventions and public health strategies for primary and secondary prevention of developmental impairments and strategies to improve surgery planning. There are various modalities to monitor brain activity including electroencephalogram (EEG) and near-infrared spectroscopy (NIRS). While EEG is able to detect fast electrical activities on the surface of the brain, it has low spatial resolution which is required discriminate individual regions of the brain. On the other hand, NIRS uses optical properties of haemoglobin to determine blood oxygenation levels which are known to be correlated with neuronal activity in the brain. However, NIRS has lower temporal resolution due to relatively slow haemodynamic changes. Combing the two modalities will provide the benefit of fast temporal changes from EEG and higher spatial resolution from NIRS. An integrated EEG-NIRS sensor requires extremely low noise electronics due to the high-impedances of the EEG electrode and the optical detector. The sensor should have a small form factor and mechanically robust to be used in practical experiments. In addition such probe has the potential to be used in other applications including brain-computer interface (BCI) for rehabilitation and assistance to patients. If BCI technology is to succeed, it requires cheap, wearable and non-invasive sensors to monitor brain activity.

This is a four-year PhD that will be undertaken within the Centre for Doctoral Training in Intelligent Sensing and Measurement. See http://www.cdt-ism.org for programme details and information on how to apply.

Funding Notes

Full funding (stipend and fees) is available for 11 PhD students annually, for UK students and EU students who have been ordinarily resident in the UK for the last three years. You can find further information on eligibility on the EPSRC website. Students from EU countries are eligible for a fees only award, and we have a small number of fully funded places for EU students.

Related Subjects

How good is research at University of Edinburgh in General Engineering?
(joint submission with Heriot-Watt University)

FTE Category A staff submitted: 91.80

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2018
All rights reserved.