FindA University Ltd Featured PhD Programmes
Imperial College London Featured PhD Programmes
De Montfort University Featured PhD Programmes

Development of novel chemical synthesis methodologies for generating New drug molecules (BEWS2_USF)


   School of Chemistry

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr S Bew  No more applications being accepted  Self-Funded PhD Students Only

About the Project

This exciting PhD opportunity will generate novel organic synthetic chemistry, develop new methodology within our group1 and expand your practical skill sets allowing you to fine-tune new techniques and methods in state-of-the-art chemistry. You will generate sought-after, optically active heterocycles with multiple, new stereocenters derived from a single, readily installed stereocenter which is, critically, remote i.e. >6 atoms away from the reaction site using a cheap ‘off the shelf’ catalyst. This unresolved challenge is a radical departure from conformationally restrained ‘conventional’ catalysis; as such, this PhD project seeks an enthusiastic and independent thinker who will develop, probe & optimize a straightforward entry point to highly functionalised and chemically versatile heterocycles. Our new chemical platform unlocks an opportunity to repurpose 3 abundant/cheap feedstocks, exploit reaction diversity and via ‘chiral relay’ rapidly/efficiently generate, at will, either simple or complex linear or macrocyclic heterocycle-derived peptides with stable isotope labels.2 We know the chemistry works and have a handful of different examples but the mechanism is unclear, resolving this you will have the opportunity to undertake a computational study with our collaborator in the US.3 Worthy of note, this chemistry affords only water and nitrogen gas by-products, it is, therefore, very much at the forefront of green chemistry. Developing this aspect further you will develop and apply the chemistry to a microfluidic synthetic route.4 With the methodology in hand its application to the synthesis of biologically active anti-bacterial and anti-viral compounds will commence. Dependent on the compounds generated the products can be tested for their bioactivity at Public Health England or via our industrial connections, this will allow you to probe, establish and refine their antiviral / antibacterial activity. 

For more information on the supervisor for this project, please go here https://people.uea.ac.uk/s_bew. 

This is a PhD programme. The start date is 1 October 2021. The mode of study is full time. 

Entry requirements: Acceptable first degree 2:1 in Chemistry.

Applications are processed as soon as they are received and the project may be filled before the closing date, so early application is encouraged.


Funding Notes

This PhD project is offered on a self-funding basis. It is open to applicants with funding or those applying to funding sources. Details of tuition fees can be found at https://www.uea.ac.uk/about/university-information/finance-and-procurement/finance-information-for-students/tuition-fees
A bench fee is also payable on top of the tuition fee to cover specialist equipment or laboratory costs required for the research. Applicants should contact the primary supervisor for further information about the fee associated with the project.

References

i.Bew et al Angewandte Chemie, International Edition (2017), 56, 5322-5326
ii. Bew et al Chem (2016), 1, 921-945.
iii. Bew et al Organic Letters (2013), 15, 3805-3807
iv. Bew et al Tetrahedron (2019), 75, 130532
v. Bew et al Chemical Society Reviews (2012), 41, 957-97
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.