Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Development of Novel Nano-Encapsulated Drug to Overcome Cancer Stem Cells and Target Glioblastoma


   Faculty of Health, Education, Medicine and Social Care

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Mohammad Najlah, Dr Havovi Chichger, Dr Ibrahim Tolaymat  No more applications being accepted  Funded PhD Project (UK Students Only)

About the Project

Glioblastoma multiforme (GBM) is one of the most lethal and aggressive forms of malignant brain tumours in adults. Despite multimodal treatment, including surgical resection with concurrent and adjuvant radiotherapy and chemotherapy, the prognosis of GBM is poor with a median survival time of only 14.6 months and less than 5% of GBM patients surviving for more than 2 years. Glioblastoma-resistant stem cells (GSC) are the major cause of glioblastoma multiforme (GBM) chemotherapy failure. Conventional chemotherapy including the most advanced practice of intracerebral chemotherapy of glioblastoma, has had very limited success due to poor brain penetration of drugs. The impermeable nature of the blood−brain barrier (BBB) and/or low targeting efficacy of systemically-administered drugs limit their therapeutic efficacy against glioblastoma. Additionally, there are several issues associated with chemotherapy such as poor bioavailability, rapid degradation, and toxic side effects. Therefore, alternate approaches are needed to address this therapeutic issue for patients with GBM.

Intranasal (IN) drug administration offers a direct pathway for the transport of drugs traversing along olfactory or trigeminal nerves, bypassing the BBB into the brain. Additionally, drugs applied IN may traverse the epithelium at the upper olfactory regions to gain access into the cerebral spinal fluid. Therefore, nose-to-brain delivery of anticancer drugs has gained significant interest recently owing to its great potential to resolve issues associated with drug administration such as BBB permeability, low stability or/and intense first-pass metabolism.

Recently, we have synthesised a series of novel anticancer compounds (ACA0522) derived from safe nutraceutical compounds. The main breakthrough with ACA0522 is that the compound is safe, water-soluble, non-toxic, with potent anti-cancer activities. ACA0522 has reverse pan-chemoresistance activity (i.e., stronger than some established toxic drugs) and the compounds are feasible to synthesise and produce at a large scale as compared to licensed anti-cancer drugs. Our preliminary studies show that using nanocarriers, such as liposomes, to encapsulate ACA0522 results in a significant increase in the anticancer activity of the compounds observed in vitro. This might be due to the increased cellular uptake of such lipid vesicles (the liposomes). Our data demonstrates the significant potential for this discovery to impact cancer therapeutics.

In this PhD studentship project, we aim to use these findings to further the development of ACA0522 as a promising anti-cancer therapeutic. We propose that encapsulating our novel anticancer compounds, ACA0522, within a lipid nanocarrier suitable for nose-to-brain direct inhalation will allow localised and targeted treatment of glioblastoma. The “short-cut” between the nasal cavity and the brain makes the nose-to-brain venue a promising non-invasive route which bypasses the blood brain barrier (BBB) and improves the bioavailability of the drug in the brain.

Key objectives:

  • To design, formulate, characterise, and biologically evaluate anticancer delivery systems of ACA0522 alone and in combination with anticancer drugs (such as paclitaxel);
  • To study the potential of nose-to-brain delivery to treat glioblastoma.

The cross-faculty, laboratory-based PhD will be performed in our Superlab facilities and the Pharmaceutical Research Laboratory. Our facilities are equipped with a wide range of state-of-art facilities to produce, characterise, and biologically evaluate nanomedicines for therapeutical applications, especially, anti-cancer-treatments. With a background in Pharmacy, Pharmaceutical Science or a relevant field, you will be able to fulfil a vital role as a multidisciplinary team member helping to further develop a cancer treatment. The ARU Pharmaceutical Research Group has outstanding research with a range of successful bids, KTP, KEEP+ and research contracts, PhD completions, peer-reviewed research outputs and wide network of national and international collaborations.

This project is in collaboration with GMPriority Pharma Ltd, experts in liposomes. In addition to matched funding, GMPriority Pharma Ltd will offer their Research and Development laboratories and facilities whenever needed during the project.

If you would like to discuss this research project, please contact Professor Mohammad Najlah [Email Address Removed].

Candidate requirements

Applications are invited from UK Home fee status only. Applicants should have (or expect to achieve) a minimum upper second-class undergraduate degree (or equivalent) in a cognate discipline. A Master’s degree in a relevant subject is desirable.

Applicants must be prepared to study on a full-time basis, attending at our Chelmsford campus.

Application Procedures

Applications for a Vice Chancellor’s PhD Scholarship are made through the application portal on our website: https://aru.ac.uk/research/postgraduate-research/vc-phd-scholarships

We will review all applications after the submission deadline of 19th March. We will contact shortlisted applicants in the week commencing 3rd April. Interviews will be held between 17th April to 2nd May.

If you have any queries relating to the application process or the terms and conditions of the Scholarships, please email [Email Address Removed].

Documentation required

You will need the following documents available electronically to upload them to the application portal (we can accept files in pdf, jpeg or Word format):

  • Certificates and transcripts from your Bachelor and Masters degrees, (if applicable)
  • Your personal statement explaining your suitability for the project
  • Passport and visa, or evidence of EU Settlement Scheme (if applicable)
  • Curriculum Vitae

Please note the application form will ask you to upload a research proposal. You should upload your personal statement in this section, as proposals are not required for this scholarship.


Biological Sciences (4) Chemistry (6) Engineering (12) Medicine (26)

Funding Notes

Applications are open to Home fee status students only. This successful applicant for this project will receive a Vice Chancellor’s Scholarship award which covers Home tuition fees and provides a UKRI equivalent minimum annual stipend for three years. The award is subject to the successful candidate meeting the studentship Terms and conditions which can be found on our website: https://aru.ac.uk/research/postgraduate-research/vc-phd-scholarships
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.