Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Development of sensitive molecular viral assays to screen anti-SARS-CoV-2 formulations


   Faculty of Health and Life Science

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof W Paxton, Dr G Pollakis  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

The CASE PhD studentship provides an exciting and innovative collaboration between the University of Liverpool and Unilever to develop novel assays to monitor the anti-SARS-CoV-2 activity of newly developed products. Unilever are world leaders in developing personal care and household products which should preferentially incorporate components vital to health. The recent COVID-19 pandemic has highlighted the necessity to specifically develop products with the capacity to neutralise or destroy SARS-CoV-2, the causative virus of the disease. New products would typically be tested using live replication competent virus and assays able to monitor reduction in virus infection and/or replication. At the University of Liverpool, we utilise pseudo-typed viral particles to monitor viral infection and interactions with cells. These non-replicative particles will enable development of assays that eliminate the requirement to test new products using replicative virus, thereby minimising laboratory CL3 capacity and cost. For translation to industrial high through-put screening of formulations this is essential. The aim of this project is to develop anti-SARS-CoV-2 assays using pseudo-typed viral particles, developing means of quantifying antiviral activity through use of fluorescently labelled viral particles or assays which are tagged with easily identifiable DNA/RNA molecular probes for monitoring their structural integrity or infectivity. Working with Unilever, the project then aims to develop a high throughput protocol to enable Unilever product formulations to be tested.

The project will provide the student with a complementary project allowing them to develop and hone their molecular skills towards developing a technology with translatable potential and in a subject area of immense and timely importance. The strong collaboration between the University of Liverpool and Unilever will enable the student to bridge the gap between basic academic science and translation to state-of-the-art technologies to monitor anti-viral products in an industrial setting. The main virus of study will be SARS-CoV-2 but the technologies will be applicable for monitoring other known viruses or emerging viruses of the future. The aim is to develop a fast and sensitive high-throughput assay for monitoring antiviral potential of product formulations. The student will gain invaluable experience not just in assay development but in understanding the numerous processes and undertakings in bringing a product to testing and development in a large-scale industrial company. 

HOW TO APPLY

Applications should be made by emailing [Email Address Removed] with:

·        a CV (including contact details of at least two academic (or other relevant) referees);

·         a covering letter – clearly stating your first choice project, and optionally 2nd ranked project, as well as including whatever additional information you feel is pertinent to your application; you may wish to indicate, for example, why you are particularly interested in the selected project(s) and at the selected University;

·        copies of your relevant undergraduate degree transcripts and certificates;

·        a copy of your passport (photo page).

A GUIDE TO THE FORMAT REQUIRED FOR THE APPLICATION DOCUMENTS IS AVAILABLE AT https://www.nld-dtp.org.uk/how-apply. Applications not meeting these criteria may be rejected.

In addition to the above items, please email a completed copy of the Additional Details Form (as a Word document) to [Email Address Removed]. A blank copy of this form can be found at: https://www.nld-dtp.org.uk/how-apply.

Informal enquiries may be made to [Email Address Removed]. The closing date for applications is 10th January 2022 at 5.00pm (UK time).


Biological Sciences (4)

Funding Notes

CASE studentships are funded by the Biotechnology and Biological Sciences Research Council (BBSRC) for 4 years. Funding will cover tuition fees at the UK rate only, a Research Training and Support Grant (RTSG) and stipend. We aim to support the most outstanding applicants from outside the UK and are able to offer a limited number of bursaries that will enable full studentships to be awarded to international applicants. These full studentships will only be awarded to exceptional quality candidates, due to the competitive nature of this scheme.

References

Ebola virus antibody decay–stimulation in a high proportion of survivors Nature (2021) 590(7846):468-472.

Generation of Liposomes to Study the Effect of Mycobacterium Tuberculosis Lipids on HIV-1 cis-and trans-Infections International Journal of Molecular Sciences (2021) 22(4):1945.

Blood CXCR3+ CD4 T cells are enriched in inducible replication competent HIV in aviremic antiretroviral therapy-treated individuals. Frontiers in Immunology (2018) 5:144.

Altered dynamics and differential infection profiles of lymphoid and myeloid cell subsets during acute and chronic HIV-1 infection. Journal of Leukocyte Biology (2011) 89:785-795.

Efficient capture of antibody neutralized HIV-1 by cells expressing DC-SIGN and transfer to CD4+ T lymphocytes. Journal of Immunology (2007) 177:3177-3185.


Where will I study?