Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

University of Bristol Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
University College London Featured PhD Programmes
University of Manchester Featured PhD Programmes

Discovery of solid electrolytes for new battery technology using Deep Learning (Reference LRC1904CHEM)


Project Description

In the quest towards safer and higher capacity batteries, the development of an all-solid-state battery is a top priority, and is currently limited by the lack of a high-performance material to serve as a solid state electrolyte. The interplay of many considerations including structure, bonding, and defect chemistry makes for a challenging opportunity to develop a material that is stable and is able to rapidly conduct ions in the solid state. Machine learning methods have been successfully applied to many complex problems, and recent work has demonstrated such methods may also be viable to predict new functional materials with desirable properties, such as ionic conductivity. In particular, deep learning methods have attracted attention for their ability to consider complex combinations of multiple attributes/features in a nonlinear fashion to predict structured outputs. This PhD project will explore the possibility of using deep convolutional neural networks to extract feature combinations and predict various properties related to the ionic conductivity of materials.
Specifically, the student will work closely with computer scientists, inorganic chemists, physicists, and material scientists to develop tools to predict new materials that may exhibit high ionic conductivity. This may involve developing models to identify new chemistries or regions of the periodic table where high ionic conductivity may occur, and/or identifying new ways to improve ionic conductivity in existing materials. As a part of this goal, the student will build models and descriptors to identify shared features in known materials that correlate strongly with the presence of high ionic conductivity.

The deep learning approaches applied will go far beyond the conventional approaches deployed by physical computational science researchers thus far in the literature. This will be combined with the development of appropriate descriptors that use the teams understanding of materials chemistry and physics
.
Qualifications: Applications are welcomed from students with a 2:1 or higher master’s degree or equivalent in Computer Science, Chemistry, Physics, or Materials Science, particularly those with some of the skills directly relevant to the project outlined above. Previous experience developing machine learning models is not a requirement, though successful candidates will have strong math and programming skills.

This position will remain open until a suitable candidate has been found.

Informal enquiries should be addressed to Prof Matthew Rosseinsky

Please apply by completing the online postgraduate research application form here: https://www.liverpool.ac.uk/study/postgraduate-taught/applying/online/ please quote the reference when applying: Discovery of solid electrolytes for new battery technology using Deep Learning (Reference LRC1904CHEM)

Funding Notes

The award is primarily available to students resident in the UK/EU and will pay full tuition fees and a maintenance grant for 3.5years (£14,777 pa in 2018/19). Non-EU nationals are not eligible for this position and applications from non-EU candidates will not be considered unless you have your own funding.

References

Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci., 10, 306-320 (2017); http://dx.doi.org/10.1039/C6EE02697D

Machine learning modelling of superconducting critical temperature. arXiv:1709.02727 [cond-mat.supr-con] https://arxiv.org/abs/1709.02727

Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties. APL Mater. 4, 053213 (2016); http://dx.doi.org/10.1063/1.4952607

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2018
All rights reserved.