Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Disentangling the paleoproxy challenge of the Humboldt Current System and Beyond


   School of Biological & Environmental Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Clare Bird, Dr B Hoogakker, Dr K Darling  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

During this PhD you will collect and work with marine planktonic foraminifera from the Humboldt Current System (HCS) off Chile. You will acquire skills in molecular biology (genotyping and metabarcoding), geochemistry (laser ablation) and electron microscopy to develop understanding of the HCS through time. This work will contribute to the development of tools for the reconstruction of past climates; a requirement for ground-truthing climate models.

The Humboldt Current System (HCS) of the southeast Pacific Ocean is one of the most complex and productive upwelling systems in the world, which supports large fisheries on which the people of the region depend. It is heavily influenced by the cycles of El Niño–Southern Oscillation (ENSO) and recent evidence shows that the coastal upwelling dynamics are changing, potentially forced by global warming. These changes have cascading impacts on fisheries, biodiversity, food security and livelihoods. Predicting how ENSO patterns will alter the HCS as climate changes, is one of the biggest challenges in climate science today.

To model future climate scenarios, it is important to understand how the regional climate has changed in the past in response to previous global warming. To do so, we use the assemblage and chemical composition of shells of microscopic marine planktonic organisms called foraminifera (forams) as “proxies” for past conditions. The use of forams as a palaeoceanographic tool, however, needs to be filtered through a lens of biological understanding. The differing biology of foram species and foram genotypes influences shell composition, leading to the routine use of species-specific proxies by palaeoceanographers, whilst the more accurate genotype-specific proxies are still in the development phase.

The overarching aim of this project is to establish the foraminiferal species and genotypes present in the upwelling and oxygen minimum zone (OMZ) waters of the HCS. We will then use our developed molecular approach to link these genotypes to their unique biology. We will combine this molecular data with eSEM imaging of genotyped individuals and genotype-specific measurements of shell composition to develop genotype-specific proxies. These methods will be directly applicable for research in other ocean regions and will provide palaeoceanographers with the most accurate tools to reconstruct past oceanic conditions, and climate modellers with finely tuned seasonal datasets for ground truthing of climate models.

This PhD will be part of a wider NERC funded project “Disentangling the Genotype Palaeoproxy Challenge in the Humboldt Current System and Beyond.” It would be advantageous for the successful candidate to have some experience in at least one of the following: molecular biology; shell geochemical analysis; eSEM; foraminiferal geology. However, training will be provided throughout the PhD in each of these areas. In addition, the PhD student will gain experience in participating in short cruises in the southeast Pacific and will receive training in catching live foraminifera using plankton nets. They will also benefit from the experience and knowledge of the HCS of our Chilean collaborators.


Biological Sciences (4) Geology (18)

Funding Notes

The funding for this studentship is through the IAPETUS doctoral training program. For information and to apply visit https://www.iapetus2.ac.uk/ For an informal chat you can contact Dr Clare Bird. The deadline for applications is 7th January 2022,
The entry qualification for this PhD studentship is a first class or 2.1 honours degree in a Geosciences or Biological Sciences.

References

Sadekov, A. Y. et al. Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state. Nat Commun 4, 2692 (2013).
Ford, H. L., Ravelo, A. C. & Polissar, P. J. Reduced El Niño–Southern Oscillation during the Last Glacial Maximum. Science 347, 255–258 (2015).
Bird, C. et al. 16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktic foraminifer). PLOS ONE 13, e0191653 (2018).

Where will I study?

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.