or
Looking to list your PhD opportunities? Log in here.
These projects are open to students worldwide, but have no funding attached. Therefore, the successful applicant will be expected to fund tuition fees at the relevant level (home or international) and any applicable additional research costs. Please consider this before applying.
Distributed hybrid renewable energy systems comprise of various renewable conversion systems (e.g. wind turbine, PV, solar thermal, tidal, micro-hydro, fuel cell, etc) and storage/backup units (e.g. battery bank, electrolyser/hydrogen, thermal storage unit). Hybrid renewable energy systems have a wide range of applications from electrifying rural communities to hydrogen production to providing electrical and heating/cooling demand for industry. Multi-objective optimisation, multi-criteria assessment and decision making under uncertainties are indivisible parts of the design and planning of distributed energy systems and the energy dispatch through the system.
The aim of this project is to develop a platform for integrating distributed hybrid renewable energy systems with optimal energy management and scheduling. The developed algorithms then will be implemented in the specialised software tool MOHRES and will be employed to conduct a number of design, planning and feasibility case studies with focus on the integration of distributed offshore and onshore renewables for different energy transition scenarios and for different energy-use cases, such as Power to Power, Power to Storage, and Power to Product.
Essential Background:
Decisions will be based on academic merit. The successful applicant should have, or expect to obtain, a UK Honours Degree at 2.1 (or equivalent) in relevant engineering discipline (e.g. Renewable Energy, Mechanical, Electrical, Power) or Applied Maths. .
Desirable knowledge:.
Applicants must have a good background knowledge in renewable energy conversion systems and programming in MATLAB (or Python) and be familiar with and willing to develop a strong background knowledge in artificial intelligence and multiobjective optimisation techniques during the course of their PhD study.
Application Procedure:
Formal applications can be completed online: https://www.abdn.ac.uk/pgap/login.php.
You should apply for Engineering (PhD) to ensure your application is passed to the correct team for processing.
Please clearly note the name of the lead supervisor and project title on the application form. If you do not include these details, it may not be considered for the studentship.
Your application must include: A personal statement, an up-to-date copy of your academic CV, and clear copies of your educational certificates and transcripts.
Please note: you DO NOT need to provide a research proposal with this application.
If you require any additional assistance in submitting your application or have any queries about the application process, please don't hesitate to contact us at [Email Address Removed]
This is a self-funding project open to students worldwide. Our typical start dates for this programme are February or October.
Fees for this programme can be found here Finance and Funding | Study Here | The University of Aberdeen (abdn.ac.uk)
Additional research costs / bench fees may also apply and will be discussed prior to any offer being made.
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Aberdeen, United Kingdom
Start a New search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
Novel flexibility mechanism for local energy markets and techno-economic framework for coordinated procurement of distributed flexibility in electricity distribution systems
Xi’an Jiaotong-Liverpool University
Waste to Energy and Renewable Energies – Design of Hybrid Energy Systems
University of Bradford
High-fidelity Computational Fluid Dynamics for Offshore Renewable Energy Systems (ReNU+24/EE/MPEE/RENZI)
Northumbria University