Postgrad LIVE! Study Fairs

Southampton | Bristol

Nottingham Trent University Featured PhD Programmes
University of Portsmouth Featured PhD Programmes
University of West London Featured PhD Programmes
University of Huddersfield Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes

DNA damage response and neurodegenerative diseases

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Awaiting Funding Decision/Possible External Funding
    Awaiting Funding Decision/Possible External Funding

Project Description

Human cells repair thousands of DNA lesions daily. The majority of lesions arise from the intrinsic chemical instability of DNA and include single-strand breaks and base modifications. In non-proliferating cells (for example, post-mitotic neurons) damaged DNA bases and single-strand breaks can block transcription, leading to mutations, cell death and disease. In particular, defects in DNA repair are often linked to progressive neurological disorders (X-linked mental retardation, Ataxia Telangiectasia, Seckel syndrome etc.), although their precise roles in the neurological phenotypes remain elusive.

The successful applicant will investigate the mechanistic links between deficiencies in DNA repair and neurodegeneration using cutting-edge techniques. These include differentiation of human induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) into a neural lineage, CRISPR/Cas9 gene knockout and editing, engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP), confocal microscopy, mass spectrometry etc.

Funding Notes

After January 10, 2018 only applications with funding in place will be considered.


1. Khoronenkova SV & Dianov GL (2015) ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc. Natl. Acad. Sci. 112, 3997-4002.
2. Khoronenkova SV & Dianov GL (2013) USP7S-dependent inactivation of Mule regulates DNA damage signaling and repair. Nucl. Acids Res. 41, 1750-1756.
3. Khoronenkova SV, Dianova II, Edelmann MJ, Kessler BM, Parsons JL, & Dianov GL (2012) ATM-dependent down-regulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol. Cell 45, 801-813.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.