The Hong Kong Polytechnic University Featured PhD Programmes
University College London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
University of Leeds Featured PhD Programmes
The Hong Kong Polytechnic University Featured PhD Programmes

Does mountain building control long-term climate?

About This PhD Project

Project Description

This project addresses the famous uplift-weathering hypothesis. Raymo and Ruddiman (1992) proposed that the uplift of the Tibetan Plateau over the last 50 million years has been the principal driver of the substantial global cooling over this interval. It is suggested that mountain-building can drive global cooling by amplifying the rate of chemical weathering of silicate minerals, ultimately leading to carbon sequestration on the seafloor and a reduction in atmospheric CO2 concentration. It has been almost 30 years since the publication of this idea, and the original paper has been cited nearly 2000 times, but it is still unclear if this mechanism really operated (e.g. Willenbring and Von Blanckenburg, 2010). In this project the student will develop a novel method of analysis by using climate predictions from advanced General Circulation Modelling to directly estimate global chemical weathering rates as the land surface evolves. The weathering rate estimations will be used as inputs to a biogeochemical box model, which is capable of integrating them over millions of years and producing geochemical data that can be directly compared to the geological record.

The Earth cooled significantly during the last 50 Million years, and this cooling was most likely driven by a long-term reduction in atmospheric CO2 concentration. The reasons for CO2 decline are uncertain, but one prominent hypothesis is that carbon was sequestered as the result of the collisional uplift of the Himalayas and Tibetan Plateau (Raymo and Ruddiman, 1992). Over multimillion-year timescales, the amount of carbon contained in the atmosphere-ocean system is controlled by the rate of volcanic degassing, and the rate of removal of carbon to the sediments (‘carbon burial’). Inorganic carbon burial requires calcium or magnesium cations, which are derived from the weathering of Earth’s crust (primarily silicate rocks like granite and basalt). Thus, it is expected that the uplift of mountains led to increased liberation of these elements through weathering processes due to higher rainfall and erosion rates in mountains, and eventual burial of carbon in sediments, which ultimately led to a reduction in atmospheric CO2 and global cooling. This ‘uplift-weathering’ hypothesis is quite famous, and as well as being a key cornerstone of research into the ancient Earth system, it is also driving huge investment in present day geoengineering efforts which seek to replicate this weathering-burial effect by spreading finely-ground basaltic rocks on the Earth’s surface to mitigate against anthropogenic warming (Taylor et al., 2016). However, the uplift-weathering hypothesis has not been directly tested at the global scale, because this requires a combined approach utilizing both spatial climate models and long-term biogeochemical models, and such approaches are only just being developed.

The researcher will run the Hadley Centre general circulation climate model (Gordon et al., 2000) for a selection of paleogeographies representing the Cenozoic Era and at a variety of different CO2 levels. They will then use the model outputs to drive a spatial chemical weathering routine (Maffre et al. 2018), and use the weathering rate information as inputs to the COPSE (Carbon Oxygen Phosphorus Sulfur Evolution) model (Mills et al., 2019). This procedure will allow the global biogeochemical model COPSE to be driven by weathering calculations from GCM climates. In this way the researcher can analyse whether the changes to topography should result in enhanced weathering at the global scale, and by using COPSE, can decide whether or not the degree of weathering enhancement can cause the observed changes in CO2 and in other geochemical proxies such as the isotope ratios of strontium, carbon and sulfur.

Both the climate and biogeochemical modelling techniques are state of the art and the student will learn from the scientists who have developed these models. The question of the regulation of global climate is a top priority in the Earth sciences, and the combined field of paleoclimate-biogeochemistry is only just emerging. This project will directly address some of the key questions in the field that are also of interest to the general public, and to climate change policymakers. We therefore expect the impact of this project to be highly significant within the scientific community and beyond: for example, in 2019 Dr Mills’s students have published as lead authors in Science, Nature Geoscience and Nature communicaitons.


Gordon, C., Cooper, C,. Senior, C,. Banks, H,. Gregory, J., Johns, T., Mitchell, J. & Wood, R. The simulation of SST, sea ice extents and ocean heat transports in a coupled model without flux adjustments. Climate Dynamics 16, 147-168 (2000).

Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117-122 (1992).

Willenbring, J. K. & Blanckenburg, F. v. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211-214 (2010).

Taylor, L. L., J. Quirk, R. M. S. Thorley, P. A. Kharecha, J. Hansen, A. Ridgwell, M. R. Lomas, S. A. Banwart and D. J. Beerling. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nature Climate Change 6, 402-406 (2015).

McKenzie, N, R., Horton, B. K., Loomis, S. E., Stockli, D. F., Planavsky, N. J. & Lee, C-T. A. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444-447 (2016).

Hansen, J., et al. Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 371, 20120294 (2013).

Royer, D. L. Atmospheric CO2 and O2 during the Phanerozoic: Tools, Patterns, and Impacts. in Treatise on Geochemistry 251-267 (2014).

Mills, B. J. W., A. J. Krause, C. R. Scotese, D. J. Hill, G. A. Shields and T. M. Lenton. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Research 67, 172-186 (2019).

Maffre, P., J.-B. Ladant, J.-S. Moquet, S. Carretier, D. Labat and Y. Goddéris. Mountain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink? Earth and Planetary Science Letters 493, 174-185 (2018).

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.