Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

University of Bristol Featured PhD Programmes
University of Kent Featured PhD Programmes
University of Edinburgh Featured PhD Programmes
University of Oxford Featured PhD Programmes
Max Planck Society Featured PhD Programmes

Drivers of marine ecosystem change during an ancient abrupt global warming event

  • Full or part time
  • Application Deadline
    Monday, January 21, 2019
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

The Palaeocene-Eocene Thermal Maximum (PETM) ~56 million years ago, is the largest of a series of abrupt global warming events known from the Cenozoic. During this event, the oceans rapidly warmed by >5 °C and became more acidic, and the world became wetter and stormier with profound consequences for life on land and in the oceans. The PETM was driven by the injection of isotopically light carbon (e.g., from volcanoes or methane hydrates) into the atmosphere, and many of the associated environmental changes are similar to those occurring today. Therefore, the PETM is often considered the best geological analogue to help us understand anthropogenic environmental change and its impacts. However, whilst a large number of studies have investigated biotic and environmental change at the PETM, these have primarily focussed on individual sites or single organismal groups, preventing an understanding of both the spatial patterns of change (e.g., development of tropical exclusion zones) and ecosystem functioning before, during and after abrupt environmental change, and the relative role of abiotic drivers on these changes.
The student will address this deficit by generating/compiling datasets to quantify marine ecosystem change globally. These data will be integrated with extensive palaeoenvironmental datasets, in many cases from the same sites. Key questions that will be addressed include:
- was there a change in ecosystem function during the PETM?
- was temperature the dominant driver of marine ecosystem change?
- How do organisms with different ecologies and habitat preferences respond to the same environmental drivers?
This project was developed in collaboration with the Natural History Museum. It brings together expertise from different areas to maximise the value of existing datasets to tackle pressing questions relating to the impact of abrupt environmental change on marine communities. Each supervisor brings a complimentary skill set: Edgar is a Cenozoic microfossil specialist and palaeoceanographer specialising in abrupt ancient global warming events; Twitchett specialises in the early Mesozoic warming-related mass extinction events and effects on marine ecosystems; Butler is a vertebrate palaeontologist with relevant expertise in building and using palaeontological databases (especially the Paleobiology Database) and quantitative analysis of macroevolution).
Please contact Dr Kirsty Edgar () for more project specific details. See the CENTA webpage for information on how to apply and general information. Check out the Palaeobiology and Palaeoclimate group webpages for more information on the group that you would be joining: https://www.birmingham.ac.uk/research/activity/earth-sciences/index.aspx or follow us on twitter @Palaeo_bham.

Funding Notes

CENTA studentships are for 3.5 years and are funded by NERC. In addition to the full payment of their tuition fees, successful candidates will receive the following financial support:

Annual stipend, set at £14,777 for 2018/19
Research training support grant (RTSG) of £8,000

References

Danise, S. et al., (2014). ‘Environmental controls on Jurassic marine ecosystems during global warming’. Geology, 43, pp. 263-266.
Foster, W., and Twitchett, R. J. (2014). ‘Functional diversity of marine ecosystems after the Late Permian mass extinction event’. Nature Geoscience, 7, pp. 233-238.
Kunzig, R. (2011). World Without Ice. National Geographic. [online] Available at: https://www.nationalgeographic.com/magazine/2011/10/hothouse-earth/ [Accessed 22nd Oct. 2018].
McInerney, F.A. and Wing, S.L. (2011). ‘The Paleocene-Eocene Thermal maximum: A Perturbation of Carbon Cycle, Climate and Biosphere with Implications for the Future’. Annual Review of Earth and Planetary Sciences, 39, pp. 489-516.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2018
All rights reserved.