FREE PhD study and funding virtual fair REGISTER NOW FREE PhD study and funding virtual fair REGISTER NOW

Drone-based forest biomass and soil analysis using machine learning techniques


   UKRI CDT in the Application of Artificial Intelligence to the study of Environmental Risks (AI4ER)

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof Srinivasan Keshav, Dr Anil Madhavapeddy  No more applications being accepted  Funded PhD Project (Students Worldwide)

About the Project

Continuous monitoring of forests is possible—up to a point—using remote sensing from satellites, but satellite-based technologies typically cannot pierce the canopy cover to get more details about factors such as soil health and understory complexity. These can only be estimated by on-the-ground measurements. However, such measurements are both expensive and difficult to obtain, especially in tropical rainforests which sequester much of the world’s carbon and have the highest levels of biodiversity. We believe that the availability of drones might change this picture. 

Specifically, the goal of this project is to increase the quality and volume of field plot data by using drones equipped with one or more cameras and a hyperspectral sensor to create rich datasets of the forest area. It would then be possible to use machine learning approaches such as partial least squares or RandomForest to analyse the resultant data. For example, it may be possible to work out which particular wavebands have reflectances that predict the underlying soil properties well. Metrics for forest complexity, or even picking up data from camera traps on the forest floor might also be possible.

Useful skills for this project include: 

-        Machine learning programming and algorithm design

-        Data gathering and normalisation and analysis

-        Drone assembly, flight and deployment in a control area

-        Field work to gather datasets in local forest regions

The successful candidate will join the Application of Artificial Intelligence to the study of Environmental Risks (AI4ER) Centre for Doctoral Training (CDT), based at the University of CambridgeThe AI4ER CDT programme consists of a one-year Master of Research (MRes) course (two terms of formal teaching via lectures, practicals and team challenges plus a three-month research project),  followed by a 3 year PhD project. Both the Masters and PhD research projects will be based on the above project description. 

For further details on this project and how to apply please visit AI4ER’s applying to us webpages.


Funding Notes

This studentship is funded by The University of Cambridge’s Centre for Carbon Credits, which is affiliated with the AI4ER CDT. This is a fully funded MRes and PhD studentship to commence on 26 September 2022. The studentship will cover domestic or International tuition fees, research costs and an annual tax-free stipend of at least £15,000 for four years full-time.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs