University College London Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Sheffield Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
European Molecular Biology Laboratory (Heidelberg) Featured PhD Programmes

Ductility & Brittleness in Refractory and High-entropy Alloys

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

About This PhD Project

Project Description

For a significant increase in operating temperatures in energy conversion processes, alternative constituent phases for new high-temperature alloys beyond tradition Ni-basis superalloys have to be explored. Candidate materials that come to mind because of their high melting points are refractory metals such as V, Cr, Nb, Mo, Ta or W. But refractory elements typically show low fracture toughness and ductility at low temperature and endanger the structural integrity of, for example, turbines. In fact, body centred cubic metals typically show a ductile-brittle transition at a certain temperature, which can be extremely sensitive to small variation of impurity levels and alloying elements.

Using atomistic simulations on high performance computer, the role of impurities and alloy composition on the dislocation nucleation and migration is investigated to extract and compare their experimental signatures on the deformation behaviour associated with dislocation-induced brittleness. The goal is to develop a simulations-informed predictive model on dislocation-mediated ductility/brittleness.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.