Coventry University Featured PhD Programmes
Catalysis Hub Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
University of Glasgow Featured PhD Programmes
University of Sheffield Featured PhD Programmes

Dynamical System Modelling of the Early Auditory Pathway

  • Full or part time
  • Application Deadline
    Monday, May 13, 2019
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

The University of Exeter EPSRC DTP (Engineering and Physical Sciences Research Council Doctoral Training Partnership) is offering up to 4 fully funded doctoral studentships for 2019/20 entry. Students will be given sector-leading training and development with outstanding facilities and resources. Studentships will be awarded to outstanding applicants, the distribution will be overseen by the University’s EPSRC Strategy Group in partnership with the Doctoral College.

Supervisors:

Dr James Rankin, Department of Mathematics, College of Engineering, Mathematics and Physical Sciences
Prof Nicholas Lesica, UCL Ear Institute

Project Description:
This interdisciplinary project will develop computational and mathematical models of the auditory system to understand how complex stimuli like speech are encoded by spiking neurons in the midbrain.

The auditory midbrain is a key hub in the auditory processing pathway, functioning as an important junction that relays and shapes neural signals as they ascend towards auditory cortex. Knowledge of the way in which complex sounds, e.g. speech, are encoded in the midbrain is crucial for understanding how dysfunction in the earlier auditory processing pathway (cochlea, auditory nerve, cochlear nucleus) leads to different types of hearing loss (a problem affecting 1 in 6 people in the UK). Working with neural recordings from the auditory midbrain in gerbils, a commonly-used animal for the study of low-frequency hearing, this project will develop mathematical and computational models of the auditory processing pathway. The aim is to understand the different roles of the patterns of inputs to midbrain neurons and their intrinsic response properties (e.g. their spiking rate) in shaping their responses to complex sounds.

The project will use a dynamical systems approach to model the intrinsic properties of individual neurons in the midbrain in a biologically plausible way (working with, e.g. adaptive exponential integrate-and-fire neurons or the Hodgkin-Huxley equations). Inputs to these neurons will be based on established cochlear models and the biological details of the auditory nerve and cochlear nucleus. The resulting model will produce firing patterns directly comparable with neural recordings provided by the experimental supervisor. This data will be used to train and parameter fit the model using e.g. Bayesian optimisation or genetic algorithms. The resultant model will have explanatory power for the extent to which midbrain responses are shaped by its inputs from cochlear nucleus. Further, it will make predictions, testable in new experiments, of how midbrain responses will be affected by different dysfunctions of the early auditory system relating to hearing loss.

The successful candidate will receive training dynamical systems theory and in the development and analysis of individual neuron and neural network models. An interdisciplinary approach, incorporating known biological details of the auditory processing pathway, will require the candidate to learn the relevant biology and neuroscience along with mathematical and computational techniques. The project will involve working closely with experimental neuroscientists and experimental data. This project provides a unique opportunity to receive
training in mathematical modelling in close collaboration with experimentalists using cutting-edge methods recording spikes simultaneously from hundreds of neurons. Experience working on such interdisciplinary projects is highly sought after.

Candidates with quantitative backgrounds (mathematics, physics, engineering) and from neuroscience programmes are encouraged to apply. Programming experience, knowledge of dynamical systems theory and experience in biological modelling are a plus.

Funding Notes

For successful eligible applicants the studentship comprises:

- An index-linked stipend for up to 3.5 years full time (currently £14,777 per annum for 2018/19), pro-rata for part-time students.
- Payment of University tuition fees (UK/EU)
- Research Training Support Grant (RTSG) of £5,000 over 3.5 years, or pro-rata for part-time students

Related Subjects

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.