FindAPhD Weekly PhD Newsletter | JOIN NOW FindAPhD Weekly PhD Newsletter | JOIN NOW

EASTBIO: Characterisation and optimisation of the rumen microbiome

   College of Medicine and Veterinary Medicine

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Prof M Watson, Prof Jamie Newbold  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

The rumen microbiome is arguably one of the most economically important microbiomes on the planet. Globally, there are over 1 billion cattle and other food-producing ruminants and they are of vital importance for food security, providing meat and dairy products to billions of humans. However, the current global food system fails to feed 10% of the 7 billion humans on the planet, and the population is set to exceed 9 billion in 2050 and 11 billion in 2100. As such, the FAO estimates that by 2050 meat production will need to increase by 76% and dairy production by 63%. At the same time we must reduce the impact of the food system on the environment. In short, we must produce more food using fewer resources.

Understanding how ruminants convert their food into energy, and subsequently milk and muscle protein, is therefore of obvious importance. If we can improve the efficiency of food digestion by ruminants, we may be able to produce more food while using fewer resources, a key aim of improving global food security.

The cow rumen is adapted for the breakdown of plant material into energy and nutrients, a task largely performed by enzymes encoded by the rumen microbiome. The rumen contains a microbial ecosystem in which a dense and complex mixture of bacteria, archaea, protozoa and fungi convert carbohydrates to short-chain, volatile fatty acids (VFAs).

We have discovered thousands of novel Bacterial and Archaeal species in the cattle rumen, and we are able to predict their metabolic potential using computational techniques. However, full understanding of their role and behaviour in the rumen microbial ecosystem will require bringing these novel species into culture, and studying them in vitro and in vivo.

In this PhD, you will (i) bring into culture important rumen microbial species, focusing on gaps in the current catalogue (there are an approximately 2,300 missing species; (ii) study these novel microbes in the lab in terms of their metabolic potential, and growth and behaviour on various substrates; (iii) build beneficial communities of microbes that mimic beneficial behaviour and study these communities using multi-omics techniques; (iv) test some of these communities in an animal trial to study their effect on important ruminant phenotypes.

Funding information and application procedures:
This 4 year PhD project is part of a competition funded by EASTBIO BBSRC Doctoral Training Partnership (DTP) .

EASTBIO Application and Reference Forms can be downloaded via

Please send your completed EASTBIO Application Form along with a copy of your academic transcripts to [Email Address Removed]

You should also ensure that two references have been send to [Email Address Removed] by the deadline using the EASTBIO Reference Form.

Funding Notes

This opportunity is open to UK and international students and provides funding covering stipend and UK level tuition fees. The University of Edinburgh covers the difference between home and international fees meaning that the EASTBIO DTP offers fully-funded studentships to all appointees. There is a cap on the number of international students the DTP recruits. It is important that we know from the outset which fees status category applicants fall under when applying to our university.

Please refer to UKRI ( ing-people-and-skills/find-studentships-and-doctoral-training/get-a-studentship-to-fund-your-doctorate/) and Annex B of the UKRI Training Grant Terms and Conditions for full eligibility criteria (

PhD saved successfully
View saved PhDs