Coventry University Featured PhD Programmes
Peter MacCallum Cancer Centre Featured PhD Programmes
University of Reading Featured PhD Programmes

*EASTBIO* Harnessing Bioluminescent Bacteria to Power Photochemical Transformations

School of Chemistry

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
Dr Craig Johnston , Dr Stephen Wallace No more applications being accepted Competition Funded PhD Project (Students Worldwide)

About the Project

This project will be jointly supervised by Dr Craig Johnston (University of St Andrews) and Dr Stephen Wallace (University of Edinburgh).

The use of light energy to promote chemical reactions is one of the most vibrant and versatile areas of current research. In particular, visible light photocatalysis allows for the selective excitation of a specific molecule, which is then able to undergo energy or electron transfer with a reagent. This is a powerful strategy to form catalytic quantities of highly reactive intermediates, such as radicals or carbenes, in a highly selective manner. A vast array of novel reactions and new molecules have been generated using this approach. However, despite its widespread use in academic and industrial labs its application in large-scale multi-tonne reactions has not been realised.

This can be rationalised by the poor scalability of many photochemical methods. The main factor attributed to this is the attenuation of light as described by the Beer-Lambert law. Simply increasing the scale of a reaction will drastically reduce its surface area and with light intensity decreasing exponentially within the vessel much of this energy is wasted.

In this project, we seek to utilise bioluminescent bacteria as a photon source to conduct photochemical transformations. Importantly, a range of fluorescent proteins, luminescent marine and soil microorganisms are readily available; therefore, providing access to a variety of wavelengths of visible light. Initial studies will focus on obtaining proof-of-concept using a chemical photoredox reaction with a focus on biocompatibility. We will assess the biological response of the organism to the presence of photochemical intermediates (via transcriptomics) in addition to using modern synthetic biology approaches to tune the intensity and wavelength of the bioluminescence to create a modular, genetic approach to the cellular generation of light for a range of photochemical reactions.

Overall, the successful implementation of this strategy will offer a new method for powering photochemical transformations without a high-powered light source. This less energy intensive approach will assist the adoption of these reactions on manufacturing scales by cutting both costs and harmful emissions. This project will be suited to a student from a chemistry and/or biotechnology background with an interest in cutting-edge multidisciplinary research and creating new sustainable technologies for the production of industrial chemicals.

Application procedure

Candidates should contact Dr Johnston and Dr Wallace to discuss their application and the project before applying.

In order to apply for this position, please follow the application instructions under to obtain the EASTBIO Application form and EASTBIO reference form.

Then, submit the EASTBIO application form and your academic transcripts as part of a formal online application -

In the online application form, you will be asked to provide contact details for two academic references. Please ask your referees to use the EASTBIO reference form provided under the link above when preparing their support letter, and to ensure references are provided by the deadline on 6 January 2021.

Funding Notes

This 4 year PhD project is part of a competition funded by EASTBIO BBSRC Doctoral Training Partnership

This opportunity is open to UK and International students and provides funding to cover stipend and UK level tuition. For international candidates, the University of St Andrews will cover the Home-International fee difference. Please refer to UKRI website and Annex B of the UKRI Training Grant Terms and Conditions for full eligibility criteria.


Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.

FindAPhD. Copyright 2005-2021
All rights reserved.