Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  EASTBIO: Temporal Adaptation to Antifungal Treatment in Pathogenic Fungi


   School of Medicine, Medical Sciences & Nutrition

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Delma Childers, Dr E Wallace  No more applications being accepted  Competition Funded PhD Project (European/UK Students Only)

About the Project

Supervisors:

Dr Delma Childers (University of Aberdeen)
https://www.abdn.ac.uk/people/delma.childers

Dr Edward Wallace (University of Edinburgh)
https://ewallace.github.io/

What will you investigate?

Fungi are amazingly adaptable microorganisms and can even adapt to the antifungal agents we use to kill them.
Several studies have identified the mechanisms by which antifungals are effective at killing fungi and the key mechanisms for antifungal resistance. Antifungal treatment is also known to induce significant changes in intracellular ROS [Lee & Lee 2018], in fungal cell walls [Hopke 2016] and can have paradoxical effects on survival in mammalian infections [Lee 2012]. What these studies do not address is how fungi initially sense and respond to antifungal activity. Improving our understanding of these early adaptations to antifungal treatment can highlight the specific cellular stresses to which fungi are responding, thus giving insight into fundamental fungal cell biology under conditions relevant to human health.

Therefore, the aim of this project is to build a temporal profile of how fungal cells respond to antifungal agents using the
model yeast, Saccharomyces cerevisiae, and the clinically-relevant yeast, Candida glabrata.

The focus of this project is to investigate how antifungal exposure over time alters gene expression and protein translation. These datasets will be integrated to identify temporal patterns of responses to antifungal treatment. You will use state-of- the-art sequencing to perform gene expression and molecular genetic investigations. You will work with Wallace lab colleagues to use bioinformatics and statistical software to analyse transcriptomic and translational data.

From the temporal profile, we will make predictions of how fungi are sensing antifungal stress and test these hypotheses using cutting-edge molecular techniques to genetically modify yeast. The resulting yeast strains will be assessed for antifungal sensitivity, cell wall alterations, and for variations in host-pathogen interactions.
You will work with Childers lab colleagues to learn pathogenic yeast cultivation, cell wall and phenotypic analysis, and host- pathogen interactions. This project should significantly improve our understanding of the molecular mechanisms behind how fungal cells sense and adapt to antifungals.

What training will you receive? You will be trained to become a well- rounded scientist who is able to
communicate with scientific and general audiences. You will learn transferable methodologies: microbiological techniques, cell wall and phenotypic analysis, and modern molecular approaches, including CRISPR-Cas9 gene editing. You will also learn a competitive and highly sought skill from the Wallace lab: how to handle large datasets, extract RNA, and best practices in bioinformatics and statistical analysis.

What comes next?
Upon completing this project, you will have successfully gained highly competitive skills for the life sciences industry. There is a growing demand for scientists with bioinformatics training and the capacity to make sense of ‘big data’. The knowledge you gain of wet-lab research activities and dataset handling will help you drive impactful research in academic or industrial settings. The communication, analysis, and problem-solving skills you learn on this project will be transferable and competitive across employment sectors.

Application Procedure:
http://www.eastscotbiodtp.ac.uk/how-apply-0

Please send your completed EASTBIO application form, along with academic transcripts and CV to Alison McLeod at [Email Address Removed]. Two references should be provided by the deadline using the EASTBIO reference form. Please advise your referees to return the reference form to [Email Address Removed].


Funding Notes

This 4 year PhD project is part of a competition funded by EASTBIO BBSRC Doctoral Training Partnership. This opportunity is only open to UK nationals (or EU students who have been resident in the UK for 3+ years immediately prior to the programme start date) due to restrictions imposed by the funding body. Queries on eligibility? Email Alison McLeod ([Email Address Removed]).

Candidates should have (or expect to achieve) a minimum of a First Class Honours degree in a relevant subject. Applicants with a minimum of a 2:1 Honours degree may be considered provided they have a Distinction at Masters level.

References

Lee & Lee 2018. A novel mechanism of fluconazole: fungicidal activity through dose-dependent apoptotic responses in Candida albicans. Microbiology; 164:194– 204.

Hopke A, et al. 2018. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion. Trends Microbiol 26: 284–295.

Lee et al. 2012. Antimicrob Agents Chemother. 56(1):208-17.

Where will I study?