Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Effect of Blade Surface Contamination on Wind Turbine Energy Production


   Faculty of Science and Engineering

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof James Gilbert, Prof S Hogg, Dr Abbas Hassan  No more applications being accepted  Funded PhD Project (UK Students Only)

About the Project

This PhD scholarship is offered by the Aura Centre for Doctoral Training in Offshore Wind Energy and the Environment; a partnership between the Universities of Durham, Hull, Newcastle and Sheffield. The successful applicant will undertake a PG-Dip training year and will continue their PhD research at the University of Hull.

For more information visit www.auracdt.hull.ac.uk. If you have a direct question about the project, you may email [Email Address Removed] or the project supervisor.

This project aims to use CFD analysis and wind tunnel testing to assess the effects that sand-induced leading edge erosion and sand adhesion to wind turbine blades has on energy production.

Leading Edge Erosion of wind turbine blades, caused by rain, hail and particulate impacts, can significantly affect the aerodynamic performance of blades and reduce the energy yield of turbines. Recent results have shown that the progression of erosion and the reduction in Annual Energy Production can be modelled with good accuracy. As offshore wind energy becomes more widely deployed, the impact of atmospheric sand on turbine performance becomes more important. In desert regions and offshore sites close to desert areas, airborne sand adheres to turbine blades and also causes leading edge erosion. The mechanisms and effects of sand adhesion and erosion are less well understood than rain induced effects.

This project will use field data on sand adhesion and sand-induced erosion of turbine blades as inputs to computational fluid dynamic (CFD) models in order to assess the effect of these phenomena on the lift and drag of typical aerofoil sections. The results of these numerical models will be validated through wind tunnel testing of appropriate scaled blade sections. The resulting aerodynamic performance changes will be combined with wind resource data to estimate the effect of sand on annual energy production and this will be compared to field data for full scale turbines. Applicants for this project should have experience of computational fluid dynamics. Experience of wind tunnel testing would be an advantage but is not essential.

Entry requirements

This PhD research project is suitable for applicants with a background in Engineering or Physics. If you have received a First-class Honours degree OR a 2:1 Honours degree and a Masters OR a Distinction in a Masters Degree, with any Undergraduate Degree, in one of the above subjects, (or the international equivalents,) we would like to hear from you. Experience of Computational Fluid Dynamics would be an advantage.

If your first language is not English, or you require Tier 4 student visa to study, you will be required to provide evidence of your English language proficiency level that meets the requirements of the Aura CDT’s academic partners. This course requires academic IELTS 7.0 overall, with no less than 6.0 in each skill.

How to apply

Applications are via the University of Hull online portal; you must also download a supplementary application form from the Aura CDT website, complete and submit as part of the online application.

For more information about the Aura CDT including detailed instructions on how to apply, please visit the website: https://auracdt.hull.ac.uk/how-to-apply/

Eligibility

Research Council funding for postgraduate research has residence requirements. Our Aura CDT scholarships are available to Home (UK) Students. To be considered a Home student, and therefore eligible for a full award, a student must have no restrictions on how long they can stay in the UK and have been ordinarily resident in the UK for at least 3 years prior to the start of the scholarship (with some further constraint regarding residence for education). For full eligibility information, please refer to the EPSRC website. Please note, we have already allocated all our places for International Students to this cohort, so please do not apply unless you are a Home student.

Engineering (12) Physics (29)

Funding Notes

The Aura CDT is funded by the EPSRC and NERC, allowing us to provide scholarships that cover fees plus a stipend set at the UKRI nationally agreed rates, circa £17,668 per annum at 2022/23 rates (subject to progress).

References

Duffy, A., Ingram, G. and Hogg, S. (2022) 'The Significance of Bypass Transition on the Annual Energy Production of an Offshore Wind Turbine', Wind Energy, 25 (4). pp. 772-787
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.