Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Emissions of Greenhouse Gases from Extensive Agriculture in the Indio-Gangetic Plain


   Department of Physics and Astronomy

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr H Boesch, Dr H Sembhi  No more applications being accepted  Funded PhD Project (European/UK Students Only)

About the Project

Agriculture is the world’s second-largest emitter of damaging greenhouse gases (GHG) after the energy sector. The future growth of the global population will result in additional pressures on the agricultural sector to secure food production whilst aiming to reduce GHG emissions. Anthropogenic methane (CH4) emissions, in particular from rice cultivation, is a prime target for GHG mitigation efforts owing to the very large warming potential of methane.

India is a major global emission hotspot and is thought to have the second largest anthropogenic methane emissions of any country. India is not only home to the world’s largest ruminant population but is also the world’s second largest producer of rice. India is also exposed to significant climate change and climate projections for 2050 for India suggest an increase in the average temperature by 2-4°C which can have dramatic consequence on the food production from India. One of the most fertile regions of India is the Indo-Gangetic Plain (IGP) with more than 225 million hectares used for rice - wheat cropping systems and other crops. Not only do these crops feed India’s growing population but plays also a critical role in the world’s food economy.

Although the importance of rice production in the global methane budget is well recognised, the involved, complex biogeochemical mechanism and the role of environmental and agronomic factors (such as climatic conditions, nitrogen fertiliser-use or field management) are not well understood. As a consequence, process-based models and emission inventories have significant uncertainties limiting the reliability of predictions of future levels of methane and hampering the development appropriate mitigation strategies for agricultural emissions.

In order to advance our understanding of agricultural GHG emissions, we will take advantage of the strong links of the EOS group to partners in India to acquire detailed measurements of the atmosphere-surface GHG exchange. Measurements of multiple trace gases simultaneously and key environmental parameters and the use of agricultural data will provide insights into controlling processes and external factors which will allow evaluating and eventually to advance predictive models used to inspect potential future scenarios.
In this project, a novel set of trace gas observations of the primary GHGs methane, carbon dioxide (CO2), nitrous oxide (N2O) (and carbon monoxide CO) will be acquired to quantify and characterise GHG fluxes. The focus will be on a new agricultural field site in the north Indian city of Chandigarh (capital of Punjab located close to foothills of Himalaya) characterised by intensive rice and wheat production and crop residue burning practises. The EOS group has already established a surface temperature radiometer at this site that complements on-going air quality measurements. The GHG observations will be used to critically evaluate process models and statistical approaches for emissions which will then be used to upscale to regional scale and assessed against methane satellite data from GOSAT and Sentinel-5P. This work will build on the strong links of the EOS group with research organisations, local policy-makers and agricultural non-government organizations in India.

This project will collaborate with two in-country partners; a) Postgraduate Institute of Medical Education and Research (PGIMER), an institute of national importance as declared by the Parliament of India and b) Panjab University, India’s top rated university in the 2014 Times Higher Education World University rankings. Both institutes actively engage with the local agricultural community through public outreach and stakeholder engagement events. We will also work in this project with University of Bremen, who have many years of expertise in flux measurements

Entry requirements:
Applicants are required to hold/or expect to obtain a UK Bachelor Degree 2:1 or better in a relevant subject. The University of Leicester English language requirements apply where applicable.
Applicants must meet requirements for both academic qualifications and residential eligibility: http://www.nerc.ac.uk/skills/postgrad/

How to apply:
You should submit your application via: https://le.ac.uk/study/research-degrees/funded-opportunities/centa-physics-boesch-2020
In the funding section of the application, please indicate you wish to be considered for CENTA2 studentship and include the project title and supervisor names within the application

Include a CV and a personal statement explaining your interest in the project and why we should consider you together with all other relevant application documents, including a CENTA application form.

Project / Funding Enquiries: Professor Hartmut Boesch, [Email Address Removed] / [Email Address Removed]
Application enquiries to [Email Address Removed]
Closing date for applications: 8th November 2019 (12:00 noon UK time)

Funding Notes

This studentship is one of a number of fully funded studentships available to the best UK and EU candidates available as part of the NERC DTP CENTA consortium.
The studentship includes a 3.5 year UK/EU tuition fee waiver
An annual tax free stipend (£15,009 for 2019/20)
RTSG of £8,000