FindAPhD Weekly PhD Newsletter | JOIN NOW FindAPhD Weekly PhD Newsletter | JOIN NOW

Emulating biomarker-guided target trials using big data


   Faculty of Health and Life Science

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof Andrea Jorgensen  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

Background to project

Stratified medicine has potential to improve the benefit-risk ratio of treatments, and the randomised controlled trial (RCT) is the gold standard for demonstrating the clinical utility of an intervention, including a biomarker-guided (‘BM-guided’) approach to treatment. Many BM-guided trial designs have been proposed for this purpose, as identified in previous work by our group1,2, which led to our web-based tool for design and analysis of BM-guided trials, BiGTeD3.

However, outcomes of interest in a BM-guided trial are often rare, and the biomarker itself can be rare. Both issues mean that large, unachievable sample sizes are required to achieve a sufficiently powered RCT. In addition, conducting RCTs can take many years making them an unattractive choice in a rapidly advancing field such as stratified medicine 4. Due to these limitations, turning to observational data to demonstrate clinical utility seems appealing. Such data can come from more traditional case-control or cohort studies, which combined in a meta-analysis can provide precise estimates of effect comparable to RCTs5. More recently, observational data are also available from routinely collected sources, such as electronic health records, which may also be linked to genetic and other data. Such data are available in the UK Biobank (UKBB)6. In addition to being less costly, observational studies can produce data more representative of the underlying patient, in the absence of some of the conditions and constraints inherent to being part of an RCT. Further, they are useful in situations where an RCT would be considered unethical, e.g. in the absence of clinical equipoise7

Despite the many benefits of observational data, a major limitation is controlling for unmeasurable confounding and other biases. However, with careful consideration, inference of causal effects from observational data can be achieved by aiming to replicate the ‘ideal RCT’ we would otherwise use to address our question of interest. This process is often referred to as ‘emulating’ a ‘target trial’8; in the context of stratified medicine the ‘target trial’ would be a BM-guided trial. Examples are available of emulating target trials of a personalised approach to treatment based on clinical characteristics9, however given the availability of large databases with data on both patient treatment history and genetic and other biomarkers, it appears sensible to explore how emulating a target trial c be useful in the field of BM-guided trials.

What the studentship will encompass:

First the literature will be reviewed and appraised on how observational data are currently used to assess clinical utility of BM-guided treatment. Next, methodologies and guidelines for emulating target trials using observational data will be reviewed, with due consideration to how applicable these are in a BM-guided trial setting. Methods and guidelines for emulating BM-guided trials from observational data will be developed, and these methods applied to real data obtained from UKBB to emulate trials of a BM-guided approach to treatment. The exemplar we propose is a target trial testing clinical utility of a genetic biomarker, SLCO1B1*5, in tailoring statin therapy using UKBB data. Whilst statins are commonly used and generally well tolerated, they are associated with statin-related myotoxicity (SRM) ranging from mild to rare but life-threatening10. Importantly SRM not only causes direct harm to patients, but also leads to statin discontinuation and non-adherence, increasing risk of major cardiovascular events and mortality11. Carriers of SLCO1B1*5 have been found to be at significantly increased risk of SRM from taking simvastatin but not other statins, and testing for SLCO1B1*5 provides an opportunity for tailoring statin therapy based on genetics. Peyser et al12 undertook a RCT of SLCO1B1 guided statin therapy, but failed to show a benefit of a genotype-guided approach. There may be several reasons for this including small sample size (n=159) and difficulty to recruit sufficient numbers for a rare adverse effect phenotype. We intend to address these limitations by utilising large scale real data on clinical events, statin prescribing and SLCO1B1*5 obtained from UKBB to emulate a target trial. At this stage, trials using various designs from bigted.org will be emulated.

A first degree or MSc with a substantial statistical component is essential. An understanding of clinical trial methodology would be advantageous but not essential. 

HOW TO APPLY

You are applying for a PhD studentship from the MRC TMRP DTP. A list of potential projects and the application form is available online at:

http://www.methodologyhubs.mrc.ac.uk/about/tmrp-doctoral-training-partnership/

Please complete the form fully. Incomplete forms will not be considered. CVs will not be accepted for this scheme.

Please apply giving details for your first choice project. You can provide details of up to two other TMRP DTP projects you may be interested in at section B of the application form.

Before making an application, applicants should contact the project primary supervisor to find out more about the project and to discuss their interests in the research.

The deadline for applications is 4pm (GMT) 18 February 2022. Late applications will not be considered.

Completed application forms must be returned to: [Email Address Removed]

Informal enquiries may be made to [Email Address Removed]


Funding Notes

Studentships are funded by the Medical Research Council (MRC) for 3 years. Funding will cover tuition fees at the UK rate only, a Research Training and Support Grant (RTSG) and stipend (stipend to include London Weighting where appropriate). We aim to support the most outstanding applicants from outside the UK and are able to offer a limited number of bursaries that will enable full studentships to be awarded to international applicants. These full studentships will only be awarded to exceptional quality candidates, due to the competitive nature of this scheme.

References

1. J. Pers. Med. 2017, 7(1), 1
2. PLoS ONE 11(2): e0149803
3. www.bigted.org
4.N Engl J Med 2017; 377:465-475
5. NEJM. 2000;342(25):1887-92
6.PLoS Med 12(3): e1001779
7.https://doi.org/10.1164/rccm.202010-3943ST
8. American Journal of Epidemiology (2016), 183(8): 758–764
9. Fert & Ster (2018) 109(6): 946-951
10. J Clin Med 2019 Dec 20;9(1):22
11 Br J Clin Pharmacol. 2014 Oct; 78(4):684-98
12 Circ Genom Precis Med. 2018; 11:e002228

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs