Queen’s University Belfast Featured PhD Programmes
University of Glasgow Featured PhD Programmes
King’s College London Featured PhD Programmes
University of Huddersfield Featured PhD Programmes
University College London Featured PhD Programmes

Engineering Actinobacteria to enhance natural product biosynthesis

  • Full or part time
  • Application Deadline
    Sunday, May 05, 2019
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

MIBTP CASE PhD studentship with industrial collaborator Isomerase Therapeutics

The Actinobacteria are important producers of approved drugs (>$1 billion dollars in 2016) but low yields of most natural products are a significant barrier to drug discovery, development and commercialisation. New approaches to improve yield would benefit the biotechnology industry and human, animal and plant health.

The nutritional state of the bacteria is a critical component in switching on natural product biosynthesis. Previous studies have identified a metabolic regulator GarA that is important for glutamate production by industrial strains of Corynebacterium glutamicumand for growth of Mycobacterium tuberculosis. GarA regulates the tricarboxylic acid cycle by inhibiting enzyme activity, and the protein is conserved in antibiotic-producing Actinobacteria.

Engineering the GarA regulatory pathway could induce natural product gene clusters and improve the supply of metabolic precursors for biosynthesis.

The BBSRC Natural Products Discovery and Bioengineering Network funded a collaboration between the University of Leicester and Isomerase Therapeutics to carry out a Proof of Concept study in 2018. The results demonstrate the importance of GarA in industrial strains ofSaccaropolyspora erythraeaand the potential to increase the yield of erythromycin production by engineering this pathway: overexpression of GarA increased the yield of erythromycin by 30% in flask fermentation.

We propose to determine the mechanism by which GarA promotes erythromycin biosynthesis (the relative contributions of gene expression changes, changes in the phosphoproteome and changes in the metabolome and precursor supply). The student will investigate how best to engineer the pathway (chemical or genetic approaches) and determine whether the approach could be applied broadly to diverse Actinobacteria.

This project will address basic questions about the stimuli controlling the GarA pathway and antibiotic production in natural and industry-relevant environments. The industrial placement will be critical to assess the impact of engineering GarA on the metabolome and antibiotic-yield within the fermenters at Isomerase Therapeutics.


1. Determine the effect of GarA overexpression on the metabolome and transcriptome of S. erythraeagrown in flask and fermenter: what is the mechanism by which GarA increases antibiotic production?
2 Determine the dynamics of GarA expression and phosphorylation in natural and lab environments. What are the stimuli for expression of GarA and kinases, and what are the stimuli for kinase activity? (amino acids and redox status are important regulators of this pathway in related organisms)
3. Investigate the potential of our panel or GarA variants to selectively regulate enzyme activity and metabolic flux.

CASE studentships are designed to provide students with a first-rate challenging research training experience within the context of a mutually-beneficial research collaboration between academic and non-academic partner organisations.

CASE students must fulfil the MIBTP entry requirements and will join the MIBTP cohort for the taught modules and masterclasses in year 1 and regular cohort events throughout their PhD.

Funding Notes

Applications accepted from UK students. EU students may be eligible; where the student has been living in the UK for 3 years prior to the programme start date. Please check the MIBTP website for further information.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.