Looking to list your PhD opportunities? Log in here.
About the Project
One of the key attributes of life is the ability to respond to stimuli. Nature has evolved a wide array of molecules, tissues and organs that sense stimuli as diverse as light, taste, pressure, odour, pheromones, and drugs. A long-term challenge of Engineering Biology (EB) (also known as synthetic biology) has been to harness these natural systems in order to develop new and improved sensing systems. A facile example is to exploit of the sensing proteins in the nose of a sniffer dog that allows it to detect narcotics to produce a handheld device that detects narcotics but without the operational limitations of using a dog. Alternatively, one might be able to use cellular receptors to monitor hormones like insulin in order to control a disease.
One way to achieve this involves a “bottom-up” approach where individual biological components, or small groups of components, are combined to produce a sensing element. This has the advantage of exploiting the unique capabilities of biological molecules without ethical issues associated with using GM organisms in the environment.
In our laboratory, we have assembled an ensemble of methods and component systems that we have shown can be used to produce sensing systems of demonstrable global importance.
Examples of sensing projects that are available in our laboratory:
1) Exploiting nano-encapsulating membrane receptors for detection
In 2009 we developed a novel method to make membrane proteins that nature uses in sensing (1,2). The method (SMALP) uses a polymer to encapsulate a sensing membrane protein complete with its surrounding lipid environment. We have shown that this is a generically applicable method that produces very stable and active samples. In this project, our aim is to exploit these proteins (particularly G-Protein Coupled Receptors (GPCRs) involved in hormone and narcotics sensing) to develop novel sensors that mimic nature. The project will involve extracting these receptors and then developing methods to integrate them into hand-held sensing systems.
2) Exploiting the world’s fastest DNA/RNA detection system
In the past 12 months, we have developed a revolutionary new method to detect viral RNA. The method, developed to address a need during the COVID pandemic, is able to detect < 10 copies of the virus/microlitre in less than 5 minutes. The method is not just applicable to COVID detection but also a wide range of other pathogenic viruses including Influenza, Respiratory Syncytial Virus (RSV), and even Ebola. The process exploits some unique properties of restriction endonucleases in order to amplify small amounts of DNA/RNA (3,4). In this project we would aim to build on this success by exploring the fundamental biochemistry that underpins the assay (including developing models that allow assays to be designed more effectively). We would also aim to examine how the methods like lateral flow devices could be used to provide a simple way to read the assay. This work would be carried out in close collaboration with researchers in the Queen Elizabeth 2 Hospital in Birmingham ensuring that the resulting assays match the real clinical needs.
How good is research at University of Birmingham in Biological Sciences?
Research output data provided by the Research Excellence Framework (REF)
Click here to see the results for all UK universitiesEmail Now
Why not add a message here
The information you submit to University of Birmingham will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Birmingham, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
E-Textiles Engineering: Sensing
University of Southampton
Doctor of Engineering (EngD) - Novel laser designs to exploit low-cost-per-Watt pumping of Ti:sapphire for application in sensing, imaging, and precise timing technologies (Fraunhofer and University of Strathclyde)
Heriot-Watt University
Doctor of Engineering (EngD): Chemical, biological and explosives sensing at stand-off with quantum cascade laser dual-comb spectroscopy (Fraunhofer and University of Strathclyde)
Heriot-Watt University