Imperial College London Featured PhD Programmes
University of Sheffield Featured PhD Programmes
Sheffield Hallam University Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Reading Featured PhD Programmes

EPSRC supported Engineering Doctorate. Prediction of complex industrial flows in the transitional regime.

  • Full or part time
  • Application Deadline
    Thursday, October 31, 2019
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

Whilst the simulation of flow in industrial reactors is now relatively well mastered for a wide range of chemical and process engineering applications, there are still several areas that require research effort, including the simulation of multiphase flows, flows with complex rheology and microstructure, and transitional flows (i.e. that are neither purely laminar nor fully turbulent). For the two former examples, there is a need for the development of physical models (e.g. drag laws, rheological models) that correctly describe the local flow behaviour. For the latter however, there is not only a very poor understanding of the causes of the transition from laminar to turbulent flow, but also a complete lack of simulation methodology for describing such flows.

Transitional flows are encountered readily in industry in diverse fields of formulation engineering (e.g. foods, personal care, pharmaceuticals, paints, lubricants) due to the nature (e.g. high viscosity, non-Newtonian rheology, complex microstructure) of the products being manipulated, as well as the intricate designs of the process equipment being used. The simulation of transitional flows in reactors is therefore very challenging because hydrodynamic instabilities create unsteady flow, which needs to be correctly captured. Turbulence models are typically not well adapted at transitional flow Reynolds numbers because the eddy viscosity hypothesis used in the models is currently designed for high Reynolds number turbulence. Ultimately, the full resolution of the time-dependent Navier-Stokes equations on an extremely fine 3-dimensional mesh would be desirable, however such simulations require excessive computing efforts, which are not viable for practical engineering applications.

To be eligible for EPSRC funding candidates must have at least a 2(1) in an Engineering or Scientific discipline or a 2(2) plus MSc. Please email your c.v. to . For more details on the Engineering Doctorate scheme please visit

Funding Notes

Tax free bursary £19,900 p.a plus fees paid

Related Subjects

How good is research at University of Birmingham in Aeronautical, Mechanical, Chemical and Manufacturing Engineering?
Chemical Engineering

FTE Category A staff submitted: 32.50

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.