Meet over 65 universities on 27 & 28 April GET YOUR FREE TICKET >
Coventry University Featured PhD Programmes
University of Reading Featured PhD Programmes

Establishing an insect model for epigenetic diseases


Department of Genetics and Genome Biology

Thursday, May 06, 2021 Competition Funded PhD Project (Students Worldwide)
Leicester United Kingdom Genetics Molecular Biology Structural Biology

About the Project

Epigenetics is defined as the heritable change in expression of a gene without any change in the DNA sequence. It is important in fields as diverse as human cancer biology and the ecological response of animals and plants to environmental pollutants. The methylation of the fifth position of DNA’s cytosine’s ring is one of the most widespread epigenetic markers.

The study of epigenetics has for the most part been correlational. A common correlational research strategy is to examine the methylation differences between two phenotypes and hypothesise that the differences found are the causes of the phenotype. What is rarer is a strategy analogous to reverse genetics, whereby the methylation of an organism is changed, and the resultant phenotype studied to confirm methylation’s role.

Until recently, what reverse epigenetics there has been of a general, crude sort. For example, early studies of the role of methylation in mammalian development, simply knocked out DMNT3, the enzyme responsible for the production of new methylation marks. This reduced the methylation throughout the embryo’s genome and the resultant phenotype was measured. Other studies decreased total genomic methylation by the use of drugs such as 5-aza-2’-deoxycytidine. This has now all changed with the use of the CRISPR system to alter the methylation levels at a single locus.

Simple insect models are needed to understand complicated biological processes. The parasitic wasp Nasonia vitripennis is a prime contender as an insect model species for epigenetics. The fruit fly, Drosophila melanogaster, has long been the predominant insect model for genetics. However, Drosophila, for the most part, lacks CpG methylation. Nasonia, like other hymenoptera, has a functional methylation system. Nasonia replicates many of the abilities of the Drosophila model, namely it is easily maintained in a laboratory environment due to its short generation time (approximately 2 weeks) and ease of rearing. Its genome has been sequenced and many molecular tools are now available for this species. Recently, CRISPR/Cas9 technology has been used to induce site specific mutations on the cinnabar (cinnabar) gene in N. vitripennis adding a new powerful molecular tool for reverse genetics for this insect.

In this project you will identify candidate genes for various epigenetic diseases. You will then alter their methylation status using CRISPR technology and record their phenotype using a series of assays.

Merely as an example, consider cancer. The development of human cancer is a multistep process, involving changes in signalling, cell-cycle and cell-death pathways, as well as interactions between the tumour and the tumour microenvironment. To dissect the steps of tumorigenesis, simple animal models, such as insect models are needed. Changes in methylation are a fundamental part of cancer development. This project will develop a system to allow changes in methylation status on a given gene in an insect model. This could lead to an insect model for cancer epigenomics, a major step forward in the field.

Entry requirements:

• Those who have a 1st or a 2.1 undergraduate degree in a relevant field are eligible.

• Evidence of quantitative training is required. For example, AS or A level Maths, IB Standard or Higher Maths, or university level maths/statistics course.

• Those who have a 2.2 and an additional Masters degree in a relevant field may be eligible.

• Those who have a 2.2 and at least three years post-graduate experience in a relevant field may be eligible.

• Those with degrees abroad (perhaps as well as postgraduate experience) may be eligible if their qualifications are deemed equivalent to any of the above

• University English language requirements apply. https://le.ac.uk/study/research-degrees/entry-reqs/eng-lang-reqs/ielts-65

To apply please refer the application instructions at https://le.ac.uk/study/research-degrees/funded-opportunities/bbsrc-mibtp

Application enquiries to


Funding Notes

All MIBTP students will be provided with a 4 years studentship.
Tuition Fees at UK fee rates
a tax free stipend of at least £15,295 p.a (to rise in line with UKRI recommendation)
a travel allowance in year 1
a travel / conference budget
a generous consumables budget
use of a laptop for the duration of the programme
Further information with regards to the funding of the fee difference will be included here shortly.

References

Mukherjee et al (2015) Insects as models to study the epigenetic basis of disease, Progress in Biophysics and Molecular Biology, Volume 118, Issues 1–2, Pages 69-78. https://doi.org/10.1016/j.pbiomolbio.2015.02.009

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Leicester will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully



Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.



FindAPhD. Copyright 2005-2021
All rights reserved.