FindAPhD Weekly PhD Newsletter | JOIN NOW FindAPhD Weekly PhD Newsletter | JOIN NOW

Experimental Discovery of New Inorganic Materials for Solid Oxide Fuel Cell (SOFC) Applications

   Department of Chemistry

  Prof M J Rosseinsky, , Dr J Claridge  Thursday, December 08, 2022  Funded PhD Project (UK Students Only)

About the Project

The PhD project is experimental-based and an exciting opportunity for the synthesis and detailed characterisation of new oxide materials for solid oxide fuel cell (SOFC) applications. The project will combine synthetic solid-state chemistry, advanced structural analysis and measurement of physical and electrocatalytic properties, enabling the successful candidate to develop a diverse skillset. The focus will be on the combination of extended and local structural bonding types to yield new material structures with enhanced performance as mixed ionic and electronic conductors. The student will participate in the selection of synthetic targets in a process that uses computational methods together with chemical understanding.

The position is part of a multi-disciplinary project: “Digital Navigation of Chemical Space for Function” that seeks to develop a new approach to materials design and discovery, exploiting machine learning and symbolic artificial intelligence, demonstrated by the realisation of new functional inorganic materials. The discovery of new inorganic materials is necessary to advance sustainable technologies, such as fuel cells which provide alternative routes to energy production that are critical for modern society to achieve net zero.

The project is based in the recently-opened Materials Innovation Factory ( at the University of Liverpool. As well as obtaining knowledge and experience in materials synthesis, crystallographic and measurement techniques, the student will develop skills in teamwork and scientific communication, as computational and experimental researchers within the team work closely together. There are extensive opportunities to use synchrotron X-ray and neutron scattering facilities.

Applications are welcomed from students with a 2:1 or higher master’s degree or equivalent in Chemistry, Physics, or Materials Science, particularly those with some of the skills directly relevant to the project outlined above. Experience in structural characterisation of inorganic materials or electron microscopy is an advantage.

For any enquiries please contact Dr Luke Daniels ().

To apply, please visit: and click on the 'Ready to apply? Apply now' button. Please ensure you quote the following reference on your application: (Reference CCPR0032) Experimental Discovery of New Inorganic Materials for Solid Oxide Fuel Cell (SOFC) Applications.

Funding Notes

The funding for this position is from an EPSRC DTP studentship. The eligibility details of both are below.
EPSRC eligibility
Applications from candidates meeting the eligibility requirements of the EPSRC are welcome – please refer to the EPSRC website View Website.
The award will pay full tuition fees and a maintenance grant for 3.5 years. The maintenance grant is £15,285 pa for 2020/21, with the possibility of an increase for 2021/22


J. Gamon, MS. Dyer, BB. Duff, A. Vasylenko, LM. Daniels, M. Zanella, MW. Gaultois, F. Blanc, JB. Claridge, and MJ. Rosseinsky, (2021) Li4.3AlS3.3Cl0.7: A Sulfide–Chloride Lithium Ion Conductor with Highly Disordered Structure and Increased Conductivity, Chem. Mater. 10.1021/acs.chemmater.1c02751
G. Han, A. Vasylenko, AR. Neale, BB. Duff, R. Chen, MS. Dyer, Y. Dang, LM. Daniels, M. Zanella, CM. Robertson, LJ. Kershaw-Cook, A-L. Hansen, M. Knapp, LJ. Hardwick, F. Blanc, JB. Claridge, and MJ. Rosseinsky (2021), Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability, J. Am. Chem. Soc., 143 (43), 18216–18232.
A. Vasylenko, J. Gamon, BB. Duff, VV. Gusev, LM. Daniels, M. Zanella, JF. Shin, PM. Sharp, A. Morscher, R. Chen, AR. Neale, LJ. Hardwick, JB. Claridge, F. Blanc, MW. Gaultois, MS. Dyer, and MJ. Rosseinsky (2021), Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry, Nat. Commun., 12, 5561
QD. Gibson, T. Zhao, LM. Daniels, HC. Walker, R. Daou, S. Hébert, M. Zanella, MS. Dyer, JB. Claridge, B. Slater, MW. Gaultois, F Corà, J. Alaria, MJ. Rosseinsky, (2021) Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch, Science, 10.1126/science.abh1619
CM. Collins, LM. Daniels, Q. Gibson, MW. Gaultois, M. Moran, R. Feetham, MJ. Pitcher, MS. Dyer, C. Delacotte, M. Zanella, CA. Murray, G. Glodan, O. Perez, D. Pelloquin, TD. Manning, J. Alaria, GR. Darling, JB. Claridge, MJ. Rosseinsky, (2021) Discovery of a Low Thermal Conductivity Oxide Guided by Probe Structure Prediction and Machine Learning. Angew. Chem.-Int. Ed. 60, 2–11
HC. Sansom, G. Longo, AD. Wright, LRV. Buizza, S. Mahesh, B. Wenger, M. Zanella, M. Abdi-Jalebi, MJ. Pitcher, MS. Dyer, TD. Manning, RH. Friend, LM. Herz, HJ. Snaith, JB. Claridge, MJ. Rosseinsky, (2021) Highly Absorbing Lead-Free Semiconductor Cu2AgBiI6 for Photovoltaic Applications from the Quaternary CuI-AgI-BiI3 Phase Space. J. Am. Chem. Soc., 143 (10). 3983 - 3992.
J. Gamon, AJ. Perez, LAH. Jones, M. Zanella, LM. Daniels, RE. Morris, CC. Tang, TD. Veal, LJ. Hardwick, MS. Dyer, JB. Claridge and MJ. Rosseinsky, (2020) Na2Fe2OS2, a new earth abundant oxysulphide cathode material for Na-ion batteries. J. Mater. Chem. A., 8, 20553-20569.
QD. Gibson, TD. Manning, M. Zanella, T. Zhao, PJ. Murgatroyd, CM. Robertson, LAH. Jones, F. McBride, R. Raval, F. Cora, B. Slater, JB. Claridge, VR. Dhanak, MS. Dyer, J. Alaria, and MJ. Rosseinsky, (2020) Modular design via multiple anion chemistry of the high mobility van der Waals semiconductor Bi4O4SeCl2. J. Am. Chem. Soc., 142 (02). 847 - 856.
M. Li, H. Niu, J. Druce, H. Tellez, T. Ishihara, JA. Kilner, H. Gasparyan, MJ. Pitcher, W. Xu, JF. Shin, LM. Daniels, LAH. Jones, VR. Dhanak, D. Hu, M. Zanella, JB. Claridge and MJ. Rosseinsky, (2020) A CO2-Tolerant Perovskite Oxide with High Oxide Ion and Electronic Conductivity. Adv. Mater., 32 (4), 1905200
J. Gamon, BB. Duff, MS. Dyer, C. Collins, LM. Daniels, TW. Surta, PM. Sharp, MW. Gaultois, F. Blanc, JB. Claridge, MJ. Rosseinsky, (2019) Computationally Guided Discovery of the Sulfide Li3AlS3 in the Li-Al-S Phase Field: Structure and Lithium Conductivity. Chem. Mater., 31 (23), 9699-9714.
ZN. Taylor, AJ. Perez, JA. Coca-Clemente, F. Braga, NE. Drewett, MJ. Pitcher, WJ. Thomas, MS. Dyer, C. Collins, M. Zanella, T. Johnson, S. Day, C. Tang, VR. Dhanak, JB. Claridge, LJ. Hardwick, MJ. Rosseinsky, (2019) Stabilization of O-O Bonds by d0 Cations in Li4+xNi1-xWO6 (0 < x < 0.25) Rock Salt Oxides as the Origin of Large Voltage Hysteresis. J. Am. Chem. Soc., 141 (18), 7333-7346
BT. Leube, KK. Inglis, EJ. Carrington, PM. Sharp, JF. Shin, AR. Neale, TD. Manning, MJ. Pitcher, LJ. Hardwick, MS. Dyer, F. Blanc, JB. Claridge and MJ. Rosseinsky, Lithium Transport in Li4.4M0.4M′0.6S4 (M = Al3+, Ga3+, and M′ = Ge4+, Sn4+): Combined Crystallographic, Conductivity, Solid State NMR, and Computational Studies. Chem. Mater. 2018, 30 (20), 7183-7200.
HC. Sansom, GFS. Whitehead, MS. Dyer, M. Zanella, TD. Manning, MJ. Pitcher, TJ. Whittles, VR. Dhanak, J. Alaria, JB. Claridge, MJ. Rosseinsky, (2017) AgBiI4 as a Lead-Free Solar Absorber with Potential Application in Photovoltaics, Chem. Mater., 29 (4), 1538-1549
C. Collins, MS. Dyer, MJ. Pitcher, GFS. Whitehead, M. Zanella, P. Mandal, JB. Claridge, GR. Darling and MJ. Rosseinsky (2017) Accelerated discovery of two crystal structure types in a complex inorganic phase field. Nature, 546 (7657) 280 - 284.
LM. Daniels, SN. Savvin, MJ. Pitcher, MS. Dyer, JB. Claridge, S. Ling, B. Slater, F. Corà, J. Alaria and MJ. Rosseinsky (2017) Phonon-glass electron-crystal behaviour by A site disorder in n-type thermoelectric oxides, Energy Environ. Sci., 10 (9) 1917-1922.
JF. Shin, W. Xu, M. Zanella, K. Dawson, SN. Savvin, JB. Claridge and MJ. Rosseinsky (2017) Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells. Nature Energy, 2(3) 16214

Email Now

PhD saved successfully
View saved PhDs