University of Birmingham Featured PhD Programmes
Brunel University London Featured PhD Programmes
Catalysis Hub Featured PhD Programmes
Newcastle University Featured PhD Programmes
University of Bristol Featured PhD Programmes

Exploiting Nonlinearities for Broadband Vibration Energy Harvesting

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

Project Description

Ever larger quantities of sensors, microcontrollers and data transmitters are installed in buildings and machinery, supplying data and information that is key for a wide range of applications, such as healthcare, energy and transport to name but a few. Cost, weight and complexity issues of this fast growing network of copper wires are alleviated by battery-powered Wireless Sensor Nodes (WSN), which, nonetheless, suffer from the need for regular maintenance and battery replacement. Vibration energy harvesting (VEH) offers an attractive “fit and forget”, maintenance-free alternative power source for WSNs. Originally, VEH concepts have been based on linear mechanical resonators tuned at the primary system’s dominant vibration frequency. Harvesters have been designed to convert the kinetic energy of their resonant vibrations to electrical energy in order to power the installed electronics. Often though, uncertainty and diverse operational conditions drive the resonator outside the narrow resonant frequency band, leading to inefficient energy harvesting and inadequate power output. Therefore, tuning the harvester to a desired mode becomes extremely sensitive to uncertainty and variations, posing one of the biggest challenges for VEH.

This project will develop vibration energy harvesters that exploit nonlinear dynamics to deliver broadband power output over a wide range of input frequencies. It involves a multidisciplinary approach to understand the response of a novel nonlinear harvesting device to varying forcing conditions. The advantages of intentionally employing nonlinearities to broaden the harvester’s efficient frequency band will be investigated via the development of theoretical models and appropriate experiments. The project is expected to significantly contribute to structural health monitoring and condition monitoring of systems with varying operation frequencies and/or interacting with irregular environmental loads.

Applicant information

Applications are invited from highly motivated candidates with an engineering or mathematical background, preferably in mechanical engineering. Applicants must hold a first class honours or 2:1 degree (or an equivalent qualification); demonstrated interest and/or experience in machine/structural dynamics and vibrations would be an advantage. Prospective applicants are also encouraged to contact Dr Panagiotis Alevras () for an informal enquiry, enclosing a CV.

Funding Notes

Funding is potentially available on a competitive basis depending on the candidate’s qualifications and experience, covering tuition fees at Home/EU level and an annual tax-free stipend of about £14,500. Non-EU applicants are also welcome to apply, however only the tuition fees may be covered for non-EU students.

Related Subjects

How good is research at University of Birmingham in Aeronautical, Mechanical, Chemical and Manufacturing Engineering?
Mechanical Engineering

FTE Category A staff submitted: 21.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.