Centre for Genomic Regulation (CRG) Featured PhD Programmes
University of Exeter Featured PhD Programmes
University of Bristol Featured PhD Programmes

Fire suppression capabilities of gas-like micromist


   Faculty of Science, Engineering and Computing


About the Project

The proclamation of the Montreal protocol in 1987, phasing out ozone depleting halons as fire suppression agent has led to a worldwide research and development effort to find alternative systems. Water has clearly emerged as a potential replacement method to halons, mainly for its non-toxicity and low cost. Water sprinkler and water mist systems are widely used nowadays in fire protection. In a typical water mist the average droplet size is about 100 microns (few millimetres for sprinklers).

Past research studies have overlooked the potential of gas-like fine mist (droplet size typically about 20 microns) for fire suppression mainly because it was widely accepted that such micromist with extremely small droplets would not have enough momentum to reach the base of the fire and would vaporize quickly. However in recent years, there has been a worldwide renewed interest in micromist water systems for fire suppression for the following main reasons: i) unlike water mist or sprinklers, gas-like micromist could reach the flame base hidden by obstacles, ii) micromist uses considerably less water than conventional water mist and 3) the relatively non-wetting nature of micromist means it is less damaging to equipment.

The main goal of the proposed PhD project is to investigate the fire suppression capabilities of fine micromist generated by flashing of superheated water through both experimental and theoretical methods.

The main objectives are:
• To conduct an extensive experimental study on the micromist fire suppression capabilities. The tests will be conducted in a reduced-scale fire testing compartment at Kingston University
• To advance gas-like mist modelling and implement developed models in a large Eddy-Simulation CFD code for micromist/fire interaction study
• To formulate recommendations on the fire suppression capability and viability of flashing micromist

Funding Notes

No funding is available - only self-funded applications can be considered

Email Now


Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.