University of Edinburgh Featured PhD Programmes
Xi’an Jiaotong-Liverpool University Featured PhD Programmes
University College London Featured PhD Programmes

Flagellum function in parasite and human model systems

Warwick Medical School

Sunday, January 10, 2021 Competition Funded PhD Project (Students Worldwide)

About the Project

This project is available through the MIBTP programme on a competition basis. The successful applicant will join the MIBTP cohort and will take part in all of the training offered by the programme. For further details please visit the MIBTP website -

African trypanosomes and their cousins (American trypanosomes and Leishmania) are flagellated parasites that cause diseases that are as diverse in their pathogenicity as they are in their spread around the globe. Together, these diseases kill tens of thousands of people each year, cause massive morbidity and economically devastating diseases of cattle. There are no vaccines and existing therapies are mostly toxic, impractical and ineffective.

Their most prominent morphological feature, the flagellum, enables their motility, sensory recognition of the host (human) and vector (insect) environment, and attachment of the parasite to vector surfaces critical for its life cycle. Flagellum motility is central for these parasites’ infection and spread. Understanding more about trypanosome flagellum function will help us understand their core cell biology and potentially inform new strategies to treat infections and prevent transmission.

Trypanosomes are a fantastic system in which to understand eukaryotic flagella. They exhibit the canonical structural features that are found in nearly all eukaryotic flagella/cilia, meaning that knowledge about trypanosome flagella is likely to be relevant to other systems, such as humans. Moreover, they have powerful and scalable reverse genetics tools and resources that make them amongst the most tractable of all eukaryotic model systems. Targeted gene tagging and mutagenesis, gene-specific RNAi and over-expression can all be performed at scale, with hundreds of mutant cell lines being generated and analysed in parallel. They have a high-quality, well annotated genome and the localisation of nearly all trypanosomes proteins is available from

Defects in human flagella (also termed cilia) cause a class of human genet disease called “ciliopathies”. Ciliopathies are complex disorders caused by genetic mutations which result in defective or dysfunctional cilia in many organs of the human body. These mutations affect diverse systems, causing deafness, blindness, learning difficulties and other developmental disorders. Over 20 ciliopathies have been identified, affecting ~1 in 1000 people, and the genetic causes underlying them are often not clear. Moreover, it is likely that there are undiagnosed ciliopathies and there is an urgent need to understand more about human ciliary function.

My lab uses trypanosomes and cultured human cells as model systems to understand eukaryotic ciliary biology, with an over-arching aim to improve human health by addressing infectious and genetic diseases. Some projects focus on investigating uncharacterised trypanosome flagellum proteins to gain insights into trypanosome flagellum function because of their extraordinary tractability and their importance for parasite pathogenicity. Other projects investigate human motile cilia because of their direct relevance for human genetic diseases. Ultimately, we use the best system to address the question being investigated, and switch between systems to test different hypotheses. And we love innovating and inventing new technologies!

We are also interested in translational projects to find new ways to kill parasites and treat human and cattle diseases. This include using new biotechnological agents, identifying new antimicrobial peptides, or identifying new toxins specific to parasites.

If any of this sounds interesting, come and talk to me and I will show you around my lab.

TL;DR: My lab uses trypanosomatid parasites and human cells to study eukaryotic flagella. We do this because flagella are important - parasite flagella are essential for infection and spread and human flagella are associated with human genetic diseases. Projects are focussed on understanding flagella in one or both these systems by investigating uncharacterised genes.

Google scholar profile:

Lab webpage:

BBSRC Strategic Research Priority: Understanding the Rules of Life: Microbiology

Techniques that will be undertaken during the project:
• Molecular biology and cloning (golden gate, Gibson assembly and traditional)
• Genome sequencing and transcriptomics
• Proteomics (immunoprecipitation, BioID, mass spectrometry)
• Cell Culture and genome engineering (CRISPR gene-editing, gene mutagenesis and tagging)
• Flow cytometry
• Fluorescence microscopy (widefield and super-resolution, such as expansion microscopy)
• Electron microscopy
• Quantitative Western analysis
• Protein purification for biochemical and structural assays
• Single molecule imaging

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Warwick will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully

Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.

FindAPhD. Copyright 2005-2020
All rights reserved.