PhD LIVE Study Fair

Oxford | Edinburgh | Sheffield

University College London Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Sheffield Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
European Molecular Biology Laboratory (Heidelberg) Featured PhD Programmes

Formulation of a novel suspending medium for immobilised culture and tissue processing

  • Full or part time
  • Application Deadline
    Wednesday, December 11, 2019
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

Bone damage following blast or ballistic wounding results in the mechanic destruction and death of tissue at the site of injury. Surgeons debride away the tissue, removing any necrotic regions and this generally enables complete regeneration of the defect. At present, however, nobody knows the nature of damage to the tissue, as it is not possible to evaluate structure or cell response in the hard boney fragments. Our hypothesis is that high energy impact in the bone results in destruction of the osteocytic network that penetrates through it. Currently there are no methods that enable full characterisation of such fragments in anatomically relevant positions within the fracture.

We have pioneered the use of a structured or fluid-gel materials as support matrices in which cell bearing gels can be immobilised, allowing for the construction of large and complex tissues [1,2]. We have recently explored the possibility of using these materials to support and process tissue fragments such that the may be maintaining in an anatomically relevant configuration.

This project will seek to refine the supporting medium so that it is possible to maintain vital tissue in suspended culture. Doing this will allow us to evaluate the capacity of the tissue to heal in an anatomically representative environment. The student will have to manufacture a supporting phase that can mediate oxygen and nutrient transport while supporting the suspension of a relatively dense tissue [3]. The ultimate aim will be to incorporate these new materials into a novel tissue processing methodology called CLARITY, which will allow us to visual the distribution of the osteocyte network within the fracture fragments.

The project will be supported by DSTL, who will provide us access to blasted and ballistically damaged animal bones and the appropriate antibodies to visualise the cell network. The project will be the world’s first example of fully suspended organ culture and we believe that the suspending material could be utilised to suspend a variety of complex tissues for study.

Funding Notes

Funding: £18,609 Tax free bursary, p.a. plus fees paid

How good is research at University of Birmingham in Aeronautical, Mechanical, Chemical and Manufacturing Engineering?
Chemical Engineering

FTE Category A staff submitted: 32.50

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.