Coventry University Featured PhD Programmes
National University of Ireland, Galway Featured PhD Programmes
University of Reading Featured PhD Programmes

Fully funded Industry-linked (Ørsted) PhD Studentship: Developing novel ways to integrate geophysical and geotechnical data for automated ground modelling of offshore wind farms

Department of Civil & Environmental Engineering

Dr Stephen Suryasentana Sunday, January 31, 2021 Competition Funded PhD Project (Students Worldwide)
Glasgow United Kingdom Applied Mathematics Data Analysis Environmental Engineering Geophysics Machine Learning Other Other Other Other Statistics

About the Project


Sponsored by Energy Technology Partnership (ETP), Ørsted and University of Strathclyde, this joint university/industry PhD offers an exciting opportunity to undertake research on novel statistical and Bayesian machine learning methods for ground modelling, supported by a multi disciplinary team of academics from two institutions (University of Strathclyde and University of Glasgow) and industry supervision from a leading offshore wind developer (Ørsted).

The research is aimed at advancing the state-of-the-art in automated ground modelling of offshore wind farms. There are many sources of information which are collected to characterise the ground of an offshore wind farm site (e.g. geophysical and geotechnical data). This project seeks to develop a rigorous, statistical framework to automatically combine these information to improve the quality of the ground model for an offshore wind farm site. This will be achieved using statistical and Bayesian machine learning techniques, including conditional autoregressive (CAR) and multi-output Gaussian process (GP) models.

In addition, the project will develop novel algorithms that use the integrated ground model to optimise the planning of new site investigation (SI) to collect more information to improve the quality and reduce the uncertainty of the ground model. As ground modelling and SI planning are important components of most construction projects, the skills acquired in this project will be in demand across a broad range of industries such as offshore wind, oil and gas etc. Furthermore, the advanced data science skills acquired in this project are highly valued across most industries.

This project is suitable for a candidate who wishes to conduct applied research that makes an immediate impact in the real world, and has a strong interest in statistics and Bayesian machine learning.

Project Details:

The successful candidate will be based primarily at the Department of Civil and Environmental Engineering (CEE), University of Strathclyde. The candidate will be jointly supervised by Dr Stephen Suryasentana and Prof Zoe Shipton (CEE, University of Strathclyde), Dr Craig Anderson (School of Mathematics and Statistics, University of Glasgow) and Prof John Quigley (Department of Management Science, University of Strathclyde). Furthermore, the candidate will work closely with the industry sponsor (Ørsted), who is the world's largest developer of offshore wind power. The candidate will receive guidance from Ørsted’s technical specialists and gain significant experience in how ground modelling is carried out in the offshore wind industry. The unique combination of academic and industry contacts will be highly beneficial to the candidate’s learning and career development, and future employability.

There will be opportunities for international collaborations and to spend a period abroad in the Data Science & Artificial Intelligence Research Centre at Nanyang Technological University, Singapore.

This project will commence in 30 Mar 2021 or later (depending on candidate's availability). The successful UK/EU candidate will receive a fully-funded scholarship, which covers all university tuition fees and an annual stipend of £15,285 (tax-free) for 3.5 years. Besides UK and EU candidates, international candidates of any other nationality are also eligible for the scholarship, but they would need to find other funding sources to cover the university tuition fee difference between the Home rate (£4,407 per annum) and the International rate (£20,900 per annum).

We would expect the candidate to have a First Class or Upper Second Class Honours degree in a relevant area of mathematical sciences (e.g. Statistics, Mathematics, Machine Learning, Computer Science, Engineering, Geostatistics, Data Science, Geophysics, Physics), and to have some experience of programming in Python and/or R. Previous experience with Bayesian statistics, Gaussian processes and geophysical data would be an advantage.

How to apply:

Please send your application (and any informal inquiries) to by 5pm on Sunday 31 Jan 2021. Your application should include the following:

•            A cover letter of at most two pages explaining why you are interested in the project and what skills you believe you would contribute to the project

•            An up to date curriculum vitae (CV)

•            Evidence of a first class or upper second class honours degree or a Master degree (or equivalent) in subjects relevant to statistics, computer science, machine learning, engineering, geostatistics, geophysics, physics or mathematics.

It is recommended to apply early as interviews will be carried out on a rolling basis until the position is filled.

Funding Notes

Fully-funded scholarship for 3.5 years covers all university tuition fees and an annual tax-free stipend of £15,285 for UK and EU students. International students of any other nationality are also eligible for the scholarship, but they would need to find other funding sources to cover the university tuition fee difference between the Home rate (£4,407 per annum) and the International rate (£20,900 per annum).

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Strathclyde will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2021
All rights reserved.