Looking to list your PhD opportunities? Log in here.
About the Project
Dunhill Medical Trust and Healthy Lifespan Institute Doctoral Training Programme Studentship
This three and a half (3.5) year studentship is part of the newly formed Dunhill Medical Trust and Healthy Lifespan Institute Doctoral Training Programme at The University of Sheffield. We aim to train the next generation of researchers to advance the understanding of the mechanisms of ageing, and to find new effective ways to improve the lives of older people living with the multiple age-related diseases that adversely impact quality of life as we age, cause disability and frailty, and result in significant costs to health and social care services.
Research Project
Frailty affects 25—50% of people over the age of 80, the fastest growing segment of the population. Patients with frailty have reduced resilience and often lose independence following a minor adverse event.
New therapies are emerging to prevent frailty and boost resilience, but testing such interventions is constrained by the complexities in carrying out trials for patients with frailty. Consequently, large samples and measuring multiple outcomes are needed to test any intervention at present, with the ensuing high costs discouraging investigators from undertaking such studies.
In this project you will collaborate closely with statisticians, clinicians and regulatory experts in designing and developing cutting edge probabilistic methodology enabling simulations of virtual patients and their integration with frailty clinical trials data.
The approach will build a library of statistical models, tailored to the end points of the clinical trial, and informed by clinical, mathematical and other relevant sources of available information. Models will then be scored and combined in a single prediction to be used in an augmented clinical trial, thus propagating clinical and model uncertainty in a coherent way.
This forecasting and information sharing system will undergo a verification and validation process, producing guidelines and recommendations for its use that will contribute to regulatory science.
Entry Requirements:
Candidates must have:
- Upper second class honours degree (2.1) or above in Mathematics, Applied Mathematics, Statistics, Physics, Bioinformatics, Data Science.
- Candidates will be expected to provide a convincing justification as to why they would like to undertake the project in their application statement, demonstrating any research knowledge and, if applicable, any experience relevant to the project.
- Candidates must be Home students
To apply:
Complete a Postgraduate Research application form here. Please state the title of the studentship, the main supervisor and select School of Mathematics and Statistics as the department.
We encourage applicants to make informal enquiries to Miguel Juarez (m.juarez@sheffield.ac.uk)
Funding Notes
- stipend and fees funded at UKRI levels
- a £5000 Research Training Support Grant per year
- £300 travel budget per year
How good is research at University of Sheffield in Mathematical Sciences?
Research output data provided by the Research Excellence Framework (REF)
Click here to see the results for all UK universitiesEmail Now
Why not add a message here
The information you submit to University of Sheffield will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Sheffield, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Fully funded PhD studentship in Photonics: 2D Material enhanced ATR and Raman chips for biomedical sensing applications
University of Southampton
Fully-funded PhD studentship: Fabrication and characterisation of Novel III-nitride Semiconductor Based Laser Diodes on a microscale for VLC and micro-display
University of Sheffield
Network Rail Fully Funded PhD Studentship – An optimisation approach for railway network recovery actions in response to disruptions - (ENG 1539)
University of Nottingham