Coventry University Featured PhD Programmes
University of Southampton Featured PhD Programmes
Sheffield Hallam University Featured PhD Programmes
University of Glasgow Featured PhD Programmes
University College London Featured PhD Programmes

Fundamental Limits of Quantum Radio Sensors

Project Description

Radio systems have been developed for over one hundred years, typically using antennas combined with electronic amplifiers and mixers. This project will study an exciting and potentially transformational technology for radio reception, called quantum or atomic radio. The sensing capability is based on the quantum properties of Rydberg atoms. When excited by a laser, these materials can respond to electromagnetic fields, such as those generated at radio frequencies. A second laser can then read the electric field state optically to allow the radio signal to be recovered. This approach provides a new paradigm for reception of radio waves that is not limited by current electronic antenna and amplifier technology. State-of-the-art radio frequency systems are typically limited to narrowband frequency operation and are usually significantly affected by both thermal noise and the effects of noise amplification. Quantum radio offers the potential to break through such limitations.

This project will explore the emerging field of quantum radio to help understand the benefits and potential applications of this technology. An important point for communications applications is to characterize the sensitivity and bandwidth of different Rydberg atomic materials. This will provide an understanding of the fundamental capabilities of this approach and how it can be applied successfully to different wireless applications.

This project is intended to be a modelling based study that applies understanding of material properties to explain how quantum radio works. A particular focus is to understand the strengths and limitations of this new technology, studying what new capabilities it can offer for reception of electromagnetic waves. The project supervisors are also interested in developing practical demonstrations of this approach and it is hoped to offer the chance to participate in real world hardware evaluations. The ideal candidate for this project would have a first degree in physics, electronic and electrical engineering or a related discipline. A capability to develop and apply mathematical modelling techniques will be particularly important for this work.

Undergraduate degree in Physics, Electronic and Electrical Engineering or related discipline.

Funding Notes

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere

How good is research at University of Edinburgh in General Engineering?
(joint submission with Heriot-Watt University)

FTE Category A staff submitted: 91.80

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2020
All rights reserved.