Looking to list your PhD opportunities? Log in here.
About the Project
Supervised machine learning models, such as artificial neural networks, are unstructured. They can be trained from data, but there is no possibility to include any additional knowledge, e.g. that two features are independent conditioned on knowing a third. To give a specific scenario, you know that air pressure affects rain which causes your weather station to measure rainfall. But air pressure has no direct affect on the rain measurement, and the two are independent if you know if it is raining or not. This cannot be included in traditional supervised machine learning.
Structure can be modelled using probabilistic graphical models. These are however limited by the inference algorithms (primarily belief propagation, Gibbs sampling and mean field variational methods), which require the use of simple probability distributions that are a poor fit to reality.
This PhD, which is aligned with the UKRI Centre for Doctoral Training in Accountable, Responsible and Transparent Artificial Intelligence (ART-AI), is about exploring more general representations, specifically arbitrary density estimates, that can represent any distribution. Prior work has almost entirely been particle based [1,2,3], and has approximations and/or inefficient search that compromises performance. There are many possible improvements that can be made to the particle approaches; additionally new alternatives can be explored.
Graphical models are a kind of explainable AI, as the structure can be human understandable. Unfortunately their underperformance relative to other models limits their usage, particularly in industry. Generalising their representative capabilities, to match better known models, is one step towards wider usage. Given the 'right to an explanation' requirement of the GDPR this may become legally necessary. Additionally, a graphical model introduces a modular structure that can be debugged. As AI makes it way into safety critical scenarios, such as self driving cars, graphical models may prove necessary for quality assurance.
Candidates should normally have a good first degree or a Master’s degree in computer science, maths, or a related discipline. A strong mathematical background is essential; good programming skill and previous machine learning experience highly desirable.
Informal enquiries about the project should be directed to Dr Tom Fincham Haines.
Formal applications should be accompanied by a research proposal and made via the University of Bath’s online application form. Enquiries about the application process should be sent to art-ai-applications@bath.ac.uk.
Start date: 2 October 2023.
Funding Notes
We also welcome applications from candidates who can source their own funding.
References
[2] "Proteins, Particles, and Pseudo-Max-Marginals: A Submodular Approach", by Pacheco & Sudderth, 2015.
[3] "Stein Variational Message Passing for Continuous Graphical Models", by Wang et al., 2017.
How good is research at University of Bath in Computer Science and Informatics?
Research output data provided by the Research Excellence Framework (REF)
Click here to see the results for all UK universitiesEmail Now
Why not add a message here
The information you submit to University of Bath will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Bath, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Using a Machine Learning approach to develop a multilingual capable system for collecting and evaluating cyber threat intelligence from online communities.
Kingston University
Machine learning for affective manipulation in music brain computer interfaces
University of Reading
Machine learning for video quality evaluation
Kingston University