Looking to list your PhD opportunities? Log in here.
About the Project
Malignant hyperthermia (MH) is an inherited condition, where patients exposed to anaesthetic drugs are susceptible to a dramatic hyperthermic and hypermetabolic response that can contribute to a significant proportion of post-operative morbidity and deaths. This is thought to result primarily from skeletal muscle Ca2+ dysregulation. A genetic diagnosis is still not possible for a large proportion of patients. Currently an invasive muscle biopsy and functional response, the in vitro contracture test (IVCT), has to be performed. Historically MH was described as an autosomal dominant condition due to RYR1 mutations. But the genetic basis now appears more complex, with variants in additional genes causing or contributing to the condition, indicating a functional threshold required for patients to become susceptible (1).
To address the incomplete understanding of the genetic basis of MH susceptibility, and functionally characterise variants of uncertain significance (VUS), CRISPR-Cas9 gene-editing will be used to replace patients' VUS with wild type sequence in hiPSC derived from fibroblasts, to edit VUS into a control hiPSC cell line, and to generate cells harbouring combinations of genetic variants. Edited cells will be differentiated into a more appropriate model muscle cell type, myotubes, and functional assessment made by live cell imaging techniques, determining responses to different compounds relevant to volatile anaesthesia and Ca2+ handling. This will identify and quantify the mechanistic alterations in Ca2+ flux between cellular compartments. Additional mechanisms such as mitochondrial and oxidative stress will also be assessed (2).
The project aim is therefore to apply the functional data generated to determine the pathogenicity of the sequence variants alone and in combinations, and their contribution to the MH susceptible phenotype. This project is based in the Leeds MH Unit which is the UK reference centre and holds the largest collection of patient-derived phenotypic data and material worldwide including DNA, cells, IVCT, exome, and RNASeq data. A highly motivated graduate will have the opportunity to work closely with both clinical and research staff in this internationally renowned unit.
Techniques used in this project
Approaches used in this project are a range of standard and specialised molecular, biochemical, and cellular techniques currently being undertaken in the MH Unit, including: stem cell culture, CRISPR-Cas9 gene editing, muscle cell differentiation, protein and transcript quantification, live cell imaging, statistical analysis. Episomal, one-step programming will be used to transform the patient fibroblasts to hiPSC’s following the protocol described by Howden et al (3). Both the WT controls and patient hiPSC’s will then be transformed into myogenic progenitor cells following the protocol described by Chal et al (4). Defined media conditions will be used to drive myogenesis, to create viable myotubes for calcium imaging experiments.
This project is available as part of the International PhD Academy: Medical Research
Eligibility:
You should hold a first degree equivalent to at least a UK upper second class honours degree in a relevant subject.
Candidates whose first language is not English must provide evidence that their English language is sufficient to meet the specific demands of their study. The Faculty of Medicine and Health minimum requirements are:
- British Council IELTS - score of 7.0 overall, with no element less than 6.5
- TOEFL iBT - overall score of 100 with the listening and reading element no less than 22, writing element no less than 23 and the speaking element no less than 24.
How to apply:
Applications can be made at any time. To apply for this project applicants should complete an online application form and attach the following documentation to support their application.
- a full academic CV
- degree certificate and transcripts of marks
- Evidence that you meet the University's minimum English language requirements (if applicable)
To help us identify that you are applying for this project please ensure you provide the following information on your application form;
- Select PhD in Medicine, Health and Human Disease as your programme of study
- Give the full project title and name the supervisors listed in this advert
Any queries regarding the application process should be directed to fmhpgradmissions@leeds.ac.uk
Funding Notes
References
(2) Chang et al (2019) Permeabilised skeletal muscle reveals mitochondrial deficiency in malignant hyperthermia-susceptible individuals. British Journal of Anaesthesia 122(5): 613-621
(3) Howden et al (2018) Simultaneous reprogramming and gene editing of human fibroblasts. Nature Protocols 13(5): 875-898
(4) Chal et al (2016) Generation of human muscle fibres and satellite-like cells from human pluripotent stem cells in vitro. Nature Protocols 11(10): 1833-1850
Email Now
Why not add a message here
The information you submit to University of Leeds will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Leeds, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Investigating the penetrance of cancer susceptibility genes in a population cohort and the influences of family history and rare and common genetic modifiers. MRC GW4 BioMed DTP PhD studentship 2024/25 Entry, PhD in Clinical and Biomedical Sciences
University of Exeter
MSc by Research: Genetic interactions and novel genes that regulate lignin biosynthesis and straw quality in barley
University of Dundee
Investigating the role of endothelial cells in myelin damage in Alzheimer's diseases using iPSC-derived model
Aston University