or
Looking to list your PhD opportunities? Log in here.
Malignant hyperthermia (MH) is an inherited condition, where patients exposed to anaesthetic drugs are susceptible to a dramatic hyperthermic and hypermetabolic response that can contribute to a significant proportion of post-operative morbidity and deaths. This is thought to result primarily from skeletal muscle Ca2+ dysregulation. A genetic diagnosis is still not possible for a large proportion of patients. Currently an invasive muscle biopsy and functional response, the in vitro contracture test (IVCT), has to be performed. Historically MH was described as an autosomal dominant condition due to RYR1 mutations. But the genetic basis now appears more complex, with variants in additional genes causing or contributing to the condition, indicating a functional threshold required for patients to become susceptible (1).
To address the incomplete understanding of the genetic basis of MH susceptibility, and functionally characterise variants of uncertain significance (VUS), CRISPR-Cas9 gene-editing will be used to replace patients' VUS with wild type sequence in hiPSC derived from fibroblasts, to edit VUS into a control hiPSC cell line, and to generate cells harbouring combinations of genetic variants. Edited cells will be differentiated into a more appropriate model muscle cell type, myotubes, and functional assessment made by live cell imaging techniques, determining responses to different compounds relevant to volatile anaesthesia and Ca2+ handling. This will identify and quantify the mechanistic alterations in Ca2+ flux between cellular compartments. Additional mechanisms such as mitochondrial and oxidative stress will also be assessed (2).
The project aim is therefore to apply the functional data generated to determine the pathogenicity of the sequence variants alone and in combinations, and their contribution to the MH susceptible phenotype. This project is based in the Leeds MH Unit which is the UK reference centre and holds the largest collection of patient-derived phenotypic data and material worldwide including DNA, cells, IVCT, exome, and RNASeq data. A highly motivated graduate will have the opportunity to work closely with both clinical and research staff in this internationally renowned unit.
Techniques used in this project
Approaches used in this project are a range of standard and specialised molecular, biochemical, and cellular techniques currently being undertaken in the MH Unit, including: stem cell culture, CRISPR-Cas9 gene editing, muscle cell differentiation, protein and transcript quantification, live cell imaging, statistical analysis. Episomal, one-step programming will be used to transform the patient fibroblasts to hiPSC’s following the protocol described by Howden et al (3). Both the WT controls and patient hiPSC’s will then be transformed into myogenic progenitor cells following the protocol described by Chal et al (4). Defined media conditions will be used to drive myogenesis, to create viable myotubes for calcium imaging experiments.
This project is available as part of the International PhD Academy: Medical Research
Eligibility:
You should hold a first degree equivalent to at least a UK upper second class honours degree in a relevant subject.
Candidates whose first language is not English must provide evidence that their English language is sufficient to meet the specific demands of their study. The Faculty of Medicine and Health minimum requirements are:
How to apply:
Applications can be made at any time. To apply for this project applicants should complete an online application form and attach the following documentation to support their application.
To help us identify that you are applying for this project please ensure you provide the following information on your application form;
Any queries regarding the application process should be directed to [Email Address Removed]
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Leeds, United Kingdom
Start a New search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
Biology of ageing: investigating the effect of novel compounds and genetic interventions on longevity and functionality
Royal Holloway, University of London
Exploring chemoprevention: Investigating the impact of novel Endocrine Disrupting Chemicals (EDCs) on breast cells and onset of tumours using a Body-on-a-chip model
University of Bradford
(BBSRC NWD) Novel micro-vessel bioengineering using iPSCs to study genetic variants on small vessel function
The University of Manchester