Geographic Question Answering on Knowledge Graphs [Self-Funded Students Only]

   Cardiff School of Computer Science & Informatics

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Dr A Abdelmoty  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

Knowledge Graphs (KG) on the Semantic Web are a representation of linked data that are collected from structured and unstructured sources and used by question-answering systems, for example, Google’s search engine. Places and geo-referenced information in general are an important part of the linked data cloud, with services such as GeoNames and DBpedia providing millions of geographic entities and acting as hubs that link many other data sets. Geographic questions about places and geo-referenced information pose several challenges to these systems, from understanding the natural language query expression to translating it to meaningful queries against the KG. This project will build on ongoing work in two main areas of research: 1) extending KG embedding techniques with the geographic dimension. (Approaches to address incompleteness of KG propose the application of graph learning methods by embedding entities and relations into continuous vector spaces for link prediction and query answering.) Representation of the extent of geographic entities and spatial relations explicitly in the KG should facilitate the application of quantitative and qualitative spatial reasoning over the graph, which otherwise would not be possible, and 2) geographic query disambiguation, involving recognition and mapping of location and spatial relations expressions. This step will build on existing studies in this area but with a focus on the integration of and mediation between location expressions provided in different KGs. Previous work considered the use of gazetteers and other non-formal resources in recognising geographic entities and the location in question. However, the problem is complicated when information about the same objects or regions in space are defined in different sources, to different resolutions and with different ontologies.  The project will propose methods that will employ spatial reasoning for handling possible incompleteness and vagueness in the graph, for example, by relaxation of spatial constraints in the query and comparing the similarity of location expressions in the graph. Generic and geographic KG data sets for evaluating the proposed methods are available. Evaluation experiments will also consider benchmark data sets and queries provided in the recent literature.

Keywords: Knowledge Graph, Semantic Web, Question Answering (QA), Geographic QA, Spatial Reasoning

Please contact Dr Alia Abdelmoty ([Email Address Removed]) for further information.

Academic criteria: A 2:1 Honours undergraduate degree or a master's degree, in computing or a related subject. Applicants with appropriate professional experience are also considered. Degree-level mathematics (or equivalent) is required for research in some project areas. 

Applicants for whom English is not their first language must demonstrate proficiency by obtaining an IELTS score of at least 6.5 overall, with a minimum of 6.0 in each skills component. 

How to apply:

Please contact the supervisors of the project prior to submitting your application to discuss and develop an individual research proposal that builds on the information provided in this advert. Once you have developed the proposal with support from the supervisors, please submit your application following the instructions provided below

This project is accepting applications all year round, for self-funded candidates via 

In order to be considered candidates must submit the following information: 

  • Supporting statement 
  • CV 
  • In the ‘Research Proposal’ section of the application enter the name of the project you are applying to and upload your Individual research proposal, as mentioned above in BOLD
  • Qualification certificates and Transcripts
  • Proof of Funding. For example, a letter of intent from your sponsor or confirmation of self-funded status (In the funding field of your application, insert Self-Funded)
  • References x 2 
  • Proof of English language (if applicable)

Interview - If the application meets the entrance requirements, you will be invited to an interview.  

If you have any additional questions or need more information, please contact: [Email Address Removed] 

Computer Science (8)

Funding Notes

This project is offered for self-funded students only, or those with their own sponsorship or scholarship award.
Please note that a PhD Scholarship may also available for this PhD project. If you are interested in applying for a PhD Scholarship, please search FindAPhD for this specific project title, supervisor or School within its Scholarships category.


1. Gao, S., et al. A data-synthesis-driven method for detecting and extracting vague cognitive regions, International Journal of Geographical Information Science, 31(6), 2017.
2. Hall, M. and Jones, C.B., Generating geographical location descriptions with spatial templates: a salient toponym driven approach, International Journal of Geographical Information Science, 36(1), 55–85, 2022

How good is research at Cardiff University in Computer Science and Informatics?

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Where will I study?