Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

University of Bristol Featured PhD Programmes
University of St Andrews Featured PhD Programmes
University of Oxford Featured PhD Programmes
Swansea University Featured PhD Programmes
Max Planck Society Featured PhD Programmes

Graphene assembly and modification with biological approaches

  • Full or part time

    Prof P Xiao
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

Graphene, a two-dimensional (2D) carbon material, has attracted huge attention in recent years due to its unique and outstanding electronic, thermal, and mechanical properties. It is predicted that graphene and graphene based materials have great potential in biomedical field for biosensor, drug delivery and tissue engineering, etc. However, the 2D graphene flakes are not stable and tend to restack to form graphite-like powders due to the strong π−π interaction between graphene sheets. Thus self-assembly of 2D graphene sheet into 3D graphene network is an effective strategy for fabricating graphene-based materials for its larger specific area, superior mechanical strength, better stability, and higher conductivity. The highly interconnected 3D graphene network provides the novel properties of 2D graphene as well as hierarchical porous structure to facilitate rapid ion transport. We are interested to develop better ways to improve the self-assembly of 3D graphene network structures by change the process and conditions of graphene oxide reduction. Biochemical and biophysical characterization techniques will be used to analyse the GO and 3D graphene materials. Ultimately, this study will provide a better method for assembly of 3D graphene for future applications in electronic or biomedical fields.

Funding Notes

Applicants are expected to hold, or about to obtain, a minimum upper second class undergraduate degree (or equivalent) in Chemistry, Biochemistry or Materials. A Master’s degree in a relevant subject area and experience in graphene or related materials study is an advantage.

References

1. Whitby RL. Chemical control of graphene architecture: tailoring shape and properties. ACS Nano. 2014 Oct 28;8(10):9733-54. Review.
2. Xu Y, Shi G, Duan X. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors. Acc Chem Res. 2015 Jun 16;48(6):1666-75.
3. Qu Y, He F, Yu C, Liang X, Liang D, Ma L, Zhang Q, Lv J, Wu J. Advances on graphene-based nanomaterials for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2018 Sep 1;90:764-780. Review.
4. Martín C, Merino S, González-Domínguez JM, Rauti R, Ballerini L, Prato M, Vázquez E. Graphene Improves the Biocompatibility of Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for Neuronal Growth. Sci Rep. 2017 Sep 8;7(1):10942.
5. Srikanth VV, Ramana GV, Kumar PS. Perspectives on State-of-the-Art Carbon Nanotube/Polyaniline and Graphene/Polyaniline Composites for Hybrid Supercapacitor Electrodes. J Nanosci Nanotechnol. 2016 Mar;16(3):2418-24. Review.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2018
All rights reserved.