Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Growth and Characterisation of Thin Film and Alkali Metal Photocathodes for the Generation of High-Brightness Electron Beams


   Cockcroft Institute

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof C Welsch  No more applications being accepted  Funded PhD Project (Students Worldwide)

About the Project

The highest levels of electron beam quality are obtained using a photoemission based electron source or photoinjector, which is a photocathode electron source emitting into an accelerating electric field. Alkali metal and thin film photocathodes are ideal candidates for these applications as they demonstrate high levels of quantum efficiency (QE) and good operational lifetime, thus permitting long uninterrupted periods of user exploitation. The high levels of QE gives additional headroom in respect of illumination laser power to facilitate transverse and longitudinal laser pulse shaping, and thus maximise the electron beam brightness and quality. 

This PhD project will focus on development of techniques to manufacture high-performance thin-film photocathode electron sources for particle accelerators, modifying and expanding the deposition equipment and processes as necessary. The intention is to identify the optimum materials and preparation techniques to achieve the highest levels of electron beam brightness, with the lowest intrinsic emittance and the longest operational lifetime. The project will continue the development and exploitation of the Transverse Energy Spread Spectrometer (TESS) for the characterisation of novel photocathode electron source materials.

In the first year of the project, you will familiarise yourself with the existing surface analysis and photocathode growth equipment, and TESS to characterise photocathode electron sources, and contribute to the commissioning of the new alkali metal photocathode growth facility which has been part-funded by the Cockcroft Institute.

In subsequent years, you will focus on the growth and characterisation of photocathode sources with different compositions, seeking an optimum deposition solution, identifying new/improved electron sources, and publishing results. The results are of high importance for many particle accelerator and light source projects and you will automatically develop an international contact network as part of your project. The photocathodes developed in this project may then be utilised in the CLARA accelerator, and the project includes the opportunity to join the accelerator operations teams to characterise their performance and gain hands-on experience at a cutting edge research facility.

The project will take place predominantly at Daresbury Laboratory, mostly involving laboratory-based studies of photoemissive materials in our state-of-the-art Vacuum Interfaces and Surface Technologies for Accelerators (VISTA) laboratory. There will also be the opportunity to use other research facilities within the lab to further characterise these materials to investigate ultimate beam brightness achievable.

Student Profile: You should hold or expect to obtain a first or upper second-class degree or equivalent (e.g. MPhys, MSci) in physics or chemistry. 

Your work will require some knowledge of and strong interest in solid state physics and thin film growth, and will involve extensive use of UHV and XHV vacuum systems. Knowledge of optics and low-power lasers (IR, visible and UV) is also desirable. Programming ability using LabVIEW would be beneficial, as would knowledge of Python or MatLab for data analysis. Prior knowledge of particle accelerator physics is desirable but not essential as you would be given the opportunity to follow the Cockcroft Institute’s postgraduate training programme.

Funding and eligibility: Upon acceptance of a student, this project will be funded by the Science and Technology Facilities Council for 3.5 years; UK and international citizens are eligible to apply. A full package of training and support will be provided by the Cockcroft Institute, and the student will take part in a vibrant accelerator research and education community of over 150 people. An IELTS score of at least 6.5 is required.

You can find out more about being a PhD student at the Cockcroft Institute here, where you can download an application form and find out about the other PhD projects available at the Cockcroft. To apply for this project, please fill in the application form and email it with your CV to [Email Address Removed].

Contact for further information: [Email Address Removed]

How to apply: http://www.cockcroft.ac.uk/join-us

Anticipated Start Date: October 2022 for 3.5 Years


Chemistry (6) Physics (29)

Where will I study?

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

 About the Project