University of Birmingham Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Dundee Featured PhD Programmes
University of Dundee Featured PhD Programmes
FindA University Ltd Featured PhD Programmes

GW4 FRESH CDT PhD Studentship: Chlorine reduction wetlands

  • Full or part time
  • Application Deadline
    Monday, December 16, 2019
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

This project is one of a number that are in competition for funding from the NERC Centre for Doctoral Training in Freshwater Biosciences and Sustainability (GW4 FRESH CDT) which is offering up to 14 studentships to start in September 2020.

GW4 FRESH is a consortium of the UK’s top research intensive universities: Bath, Bristol, Cardiff and Exeter and research organisations, British Geological Society and the Centre for Ecology and Hydrology.

This project will be based at the University of Bath.

SUPERVISORY TEAM:

Lead supervisor:
Dr Jannis Wenk, University of Bath, Department of Chemical Engineering, email
Co-supervisors:
Professor Andrew Weightman, Cardiff University, School of Biosciences
Professor Gabriel Yvon-Durocher, University of Exeter, Environment and Sustainability Institute
Mr Liam Reynolds, Wessex Water

PROJECT OVERVIEW:

Water utilities are occasionally required to discharge larger quantities of finished drinking water directly into surface waters due to local circumstances or historical obligations. If such drinking water has been chlorinated, it contains residual disinfectant that should be removed before the water is released since residual chlorine harms the aquatic ecology.

Residual chlorine can be removed physically via activated carbon adsorption or chemically with SO2 or NaS2O5. Chemical removal of residual chlorine has been routinely performed in the US. In the specific situation of a Southwest UK watershed/drinking water distribution system, active treatment measures to remove the residual chlorine are difficult to implement due to the remote location and intermediate discharges.

An alternative possibility for chlorine attenuation could be to first pass the water through a specially designed buffering wetland, where the residual chlorine is degraded. Residual chlorine decays over time (days). The decay may be increased due to catalytic/reactive interaction of chlorine with sediment soil and wetland substrate, e.g. iron/iron oxide surfaces (possibly to hours). Depending on the design of the wetland, there can be atmospheric and sunlight interaction, which also increases chlorine decay. Both soil natural organic matter and wetland organic matter may lead to secondary formation of disinfection by-products, so residual chlorine is removed but more harmful products can be formed.

The goal of this PhD project is to investigate the feasibility and potential benefits of a residual chlorine removal wetland and to understand the ecological implications of the current practice. The project takes place in close cooperation and coordination with a local water utility. The work includes an experimental part in which the interaction of residual chlorine with various wetland substrates, as well as sunlight, will be tested to inform possible wetland design, including the size and the hydraulic retention time of the buffering wetland to achieve full residual removal. The experiments also include measuring the concentration of common disinfection by-products (e.g. trihalomethanes). The effect of residual disinfectant on wetland ecosystems can be tested in specifically designed mesocosms. Within the current water shed the development of the microbial community, plants and fauna will be determined. Unrelated surface waters, upstream and downstream samples of the same water shed (including data of previous monitoring campaigns by the utility) and other nearby constructed wetlands will serve as comparison.

The PhD student will be part of a highly motivated team consisting of members at different GW4 locations and the water utility. The team is already collaborating on similar projects, including two related Fresh PhD studentships (2018 intake) on constructed polishing wetlands for nutrients and pathogen removal.

APPLICATIONS:

Applicants must have obtained, or be about to obtain, a First or Upper Second Class Honours degree, or the equivalent qualifications gained outside the UK, in an area appropriate to the skills requirements of the project.

In order to apply, you should apply direct to the CDT using online application form. See http://www.gw4fresh.co.uk/how-to-apply/doctoral-students/.

You do NOT need to apply to the University of Bath at this stage – only those applicants who are successful in obtaining an offer of funding from the CDT will be required to submit an application to study at Bath.

APPLICATIONS CLOSE AT 09:00 ON 16 DECEMBER 2019.

Funding Notes

Studentships cover Home tuition fees, training support grant and stipend (£15,009 p/a, 2019/20 rate) and are open to UK and EU citizens who have been resident in the UK since September 2017. A limited number of studentships are available to EU candidates who do not meet the residency requirement.

How good is research at University of Bath in Aeronautical, Mechanical, Chemical and Manufacturing Engineering?

FTE Category A staff submitted: 61.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.