University of Leeds Featured PhD Programmes
King’s College London Featured PhD Programmes
University of Huddersfield Featured PhD Programmes
University of Kent Featured PhD Programmes
University College London Featured PhD Programmes

Hierarchically designed piezoelectric energy harvesting materials for application in flexible systems

Project Description

High-strain environment of automotive tyres provides deformation energy that can be harvested using piezoelectric materials for powering wireless sensors, thereby reducing their reliance on batteries which will simplify sensor maintenance and management, and thereby improve safety and reduce waste associated with disposable batteries.

The aim of this project is to create novel piezo-composite materials with enhanced performance, including high piezoelectric activity, thermal stability and endurance, to effectively harvest mechanical energy in flexible systems such as car tyres. This innovative project will involve collaboration with Silent Sensors Ltd, an Internet of Things (IoT) company with a focus on intelligent tyres.

Present piezo-ceramic materials and devices are brittle and cannot be operated reliably under the high strain conditions in a car tyre unless elaborate stress transfer mechanisms are employed, which increase complexity and cost. While piezo-polymer devices provide toughness and flexibility, they do not satisfy the operating thermal requirements (up to 100°C) for use in such an environment. However, functionally optimised piezo-ceramic-polymer composite films that combine piezoelectric ceramics and a thermally resistant polymer matrix can be designed to fulfil the requirements by making appropriate choices of the constituent phases and microstructure. Furthermore, these composites are suitable for low-cost mass production and easy integration into high strain systems.

The project is funded by Silent Sensors Ltd, a unique Internet of Things company focused on tyre management and in-tyre sensor platforms for fuel efficiency and accident reduction. They will bring practical understanding of integration of the energy harvesting devices to monitor tyres whilst on the road using services made of RFID tags and data delivery through the Cloud to in-field Apps. This will increase the performance and reduce the total cost of operations.

The Department of Mechanical Engineering of the University of Bath is looking for a highly motivated candidate to:

• Design and fabricate next generation of flexible, stretchable piezoelectric materials
• Characterise electro-mechanical properties using dielectric spectroscopy, impedance spectroscopy as well as direct piezoelectric measurement of charge and voltage output. Thermo-mechanical properties will be tested using TGA, DSC and DMTA. Microstructure of the composites will be analysed using SEM.
• Map the effect of porosity, and develop a model to predict the effective electromechanical properties of composites
• Optimise the energy harvesting FOM based on properties of the constituent materials
• Characterise different electrode materials
• Mount the manufactured flexible piezo energy harvesters inside a car-tyre and evaluate the signal
• Develop a self-powered system based on the existing TPMS devices


Successful applicants will ideally have graduated (or be due to graduate) with a First class honours MSc degree (or overseas equivalent) in materials//chemical/mechanical/electrical engineering, physics or similar disciplines. Knowledge of MATLAB, LabVIEW and Signal Processing would be advantageous.

Applicants should send their CV in the first instance to A full electronic application will be required to progress further.

Formal applications should be made via the University of Bath’s online application form for a PhD in Department of Mechanical Engineering. Please ensure that you state the full project title and lead supervisor name on the application form.

More information about applying for a PhD at Bath may be found here:

Expected start date: 1st July 2019 (this may be negotiable)

Funding Notes

UK/EU awards cover tuition fees, a training support fee of £3,000/annum, and a standard tax-free maintenance payment of £14,777 (2018/9 rate) for a duration of 3.5 years. Overseas awards cover tuition fees, a training support fee of £3000/annum but no stipend.

How good is research at University of Bath in Aeronautical, Mechanical, Chemical and Manufacturing Engineering?

FTE Category A staff submitted: 61.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.