Meet over 65 universities on 27 & 28 April > REGISTER NOW
University of Portsmouth Featured PhD Programmes
Anglia Ruskin University ARU Featured PhD Programmes

High Energy Density Li-ion Cathodes: Computational Insights and Discovery of New Mixed-Anion Materials


Department of Chemistry

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
Dr Benjamin Morgan , Prof Saiful Islam No more applications being accepted Competition Funded PhD Project (European/UK Students Only)

About the Project

The University of Bath is inviting applications for a PhD position fully funded by the Faraday Institution. The successful candidate will be based in the Department of Chemistry under the supervision of Dr Benjamin Morgan https://researchportal.bath.ac.uk/en/persons/benjamin-morgan and Prof Saiful Islam https://people.bath.ac.uk/msi20/.

Overview of the research project:

A key challenge in developing batteries for future automotive applications is finding materials with both high energy densities and long lifetimes. In traditional cathode materials the electrochemical reaction during lithium cycling exclusively involves oxidation or reduction of transition metal cations. In recent years, there has significant research interest in so-called “anion-redox” cathodes, in which the anions (typically oxygen) also participate in redox processes, giving increased energy densities. Current O-redox cathodes suffer from degradation during cycling, due, in part, to irreversible oxygen loss. In contrast, sulphide electrodes, such as LiTiS2, exhibit reversible lithium cycling involving sulphur-redox, but give low energy densities due to the lower electronegativity of S versus O.

One strategy for developing cathode materials with high energy densities that are also resilient to lithium cycling is to consider mixed-anion oxy-sulphide phases. In principle, these may combine the high voltages and energy densities of layered lithium-rich oxides with the reversible capacity of layered lithium sulphides.

This PhD project will use a range of powerful atomistic modelling techniques to:
- explore the space of possible layered lithium-rich oxy-sulphides;
- identify promising candidates for future high energy-density anion-redox cathodes;
- study the detailed electrochemical changes during delithiation in these systems, and how these are affected by the anion chemistry; e.g. how do characteristics such as voltages and the tendency to evolve oxygen vary?

This project is funded by the Faraday Institution (https://faraday.ac.uk) and is affiliated with the CATMAT project (https://faraday.ac.uk/research/lithium-ion/li-ion-cathode-materials/cathode-materials-catmat/).

The student will gain considerable experience in a range of cutting-edge computational techniques, and will interact with related experimental synthesis, electrochemical and structural work from CATMAT project partners. The student will also undertake a range of training activities coordinated by the Faraday Institution giving a broad introduction into cutting edge battery research: https://faraday.ac.uk/opportunities/2020-phd-studentships/. In addition, the student will have access to multiple networking opportunities, industry visits, mentorship and internships as well as quality experiences that will further develop knowledge, skills and aspirations https://faraday.ac.uk/education-skills/phd-researchers/.

Candidate requirements:

Applicants should hold, or expect to receive, a First Class or good Upper Second Class Honours degree (or the equivalent). A master’s level qualification would also be advantageous.

Enquiries and applications:

Informal enquiries are welcomed and should be directed to Dr Benjamin Morgan, [Email Address Removed].

In order to apply for a Faraday Institution PhD position, you need to do BOTH of the following:

1. Complete a Faraday Institution expression of interest form https://www.surveymonkey.co.uk/r/9B8V3NB

2. Complete the University of Bath’s online application form for a PhD in Chemistry:
https://samis.bath.ac.uk/urd/sits.urd/run/siw_ipp_lgn.login?process=siw_ipp_app&code1=RDUCH-FP01&code2=0014

More information about applying for a PhD at Bath may be found here:
http://www.bath.ac.uk/guides/how-to-apply-for-doctoral-study/

Anticipated start date: 28 September 2020.

The University of Bath values, promotes and celebrates inclusion, challenging discrimination and putting equality, diversity and belonging at the heart of everything we do. We aim to be an inclusive university, where difference is celebrated, respected and encouraged.

Funding Notes

UK and EU applicants who have been resident in the UK since at least September 2017 will be eligible for consideration for the Faraday Institution studentship. The studentship will cover tuition fees at the 'Home' rate and will provide an enhanced stipend of approximately £20,000 per annum plus a budget of £7,000 per annum to cover project expenses, training and travel.

References

[1] Koketsu et al. Nature Mater., 16, 1142 (2017).
[2] Li et al., Nature Mater., 17, 915 (2018).
Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.



FindAPhD. Copyright 2005-2021
All rights reserved.