Imperial College London Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
Heriot-Watt University Featured PhD Programmes
University College London Featured PhD Programmes
University of Reading Featured PhD Programmes

High-resolution multispectral estimation of sea surface salinity and temperature in coastal areas (part of the SENSE Centre for Doctoral Training)

  • Full or part time
  • Application Deadline
    Sunday, January 19, 2020
  • Competition Funded PhD Project (UK Students Only)
    Competition Funded PhD Project (UK Students Only)

Project Description

Co-supervisor: Dr Tiago Silva (Cefas)

Covering around 71% of the Earth’s surface, oceans play a major role in the global climate system, [1]. The study of sea surface temperature and salinity is important to understand how oceans communicate with land and atmosphere, but also for the understanding of marine ecosystems and weather prediction, [2]. Sea surface salinity (SSS) and temperature (SST) are also relevant in the study of estuarine processes (mixing of fresh and sea water), stratification, hypoxia, organic matter, or algal blooms, among others, [3]. The SSS and SST data collection has typically been done by means of static buoys, drifters, and ship-based systems, [4]. The estimation of SST and SSS near the coast, where the detail needed might be higher due to the development of different near-shore processes and human activities, is difficult.

Different satellite missions have focused over the past decades on the measurement of oceanographic characteristics to overcome the issues that the in situ measuring techniques present. Satellites provide worldwide coverage of ocean and land phenomena, which is particularly relevant for the extraction of time series and general trends, but also for the study of localised events.

This PhD project will develop and compare techniques to extract SSS and SST from Landsat 8, [5] and Sentinel-2 data, [6, 7]. The student will focus on machine learning techniques to match satellite observations with in situ data provided by buoys, vessels and other. The methodology will extend the work developed by [7] and validate it worldwide. Moreover, the machine learning method for SSS will be extended to the Landsat 8 dataset, and compared with the Sentinel-2 approach.

Landsat 5, 7 and 8 and ASTER satellites are equipped with 100 m resolution thermal bands with moderate spectral resolution. Using atmospheric and radiative models to predict atmospheric correction (e.g. [8]), it is possible to obtain SST errors below 1 K. This methodology will be compared to results obtained by using big data and machine learning. Refinement techniques will be developed to obtain higher resolution values in coastal areas.

This PhD project will be structured as follows:

Year 1: Training in data analysis. Familiarisation with satellite data acquisition and processing techniques. Machine learning training.

Year 2: Development of data analysis algorithms. In situ data acquisition/collection and processing.

Year 3: Data analysis. Dissemination of results via peer-reviewed publications and presentations in scholarly conferences.


This PhD is part of the NERC and UK Space Agency funded Centre for Doctoral Training "SENSE": the Centre for Satellite Data in Environmental Science. SENSE will train 50 PhD students to tackle cross-disciplinary environmental problems by applying the latest data science techniques to satellite data. All our students will receive extensive training on satellite data and AI/Machine Learning, as well as attending a field course on drones, and residential courses hosted by the Satellite Applications Catapult (Harwell), and ESA (Rome). All students will experience extensive training on professional skills, including spending 3 months on an industry placement. See http://www.eo-cdt.org

Funding Notes

This 3 year 9 month long NERC SENSE CDT award will provide tuition fees (£4,500 for 2019/20), tax-free stipend at the UK research council rate (£15,009 for 2019/20), and a research training and support grant to support national and international conference travel. View Website

References

[1] Y. Sang, H. Karayaka, Y. Yan, N. Yilmaz and D. Souders, “Ocean (Marine) Energy,” Compr. Energy Syst, vol. 1, p. 733–769, 2018.
[2] National Oceanic and Atmospheric Administration, U.S. Department of Commerce. , “Why do Scientists Measure Sea Surface Temperature?,” 2018. [Online]. Available: https://oceanservice.noaa.gov/facts/sea-surface-temperature.html. [Accessed 1 June 2019].
[3] S. Chen and C. Hu, “Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean colour measurements.,” Remote Sens. Environ. , vol. 2012007, pp. 115-132.
[4] European Commission, “Copernicus Marine Environment Monitoring Service,” 2018. [Online]. Available: http://marine.copernicus.eu/ . [Accessed 1 June 2019].
[5] NASA, “Landsat 8,” [Online]. Available: https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/. [Accessed 22 November 2019].
[6] M. Drusch, U. D. Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, C. Isola, P. Laberinti, P. Martimort, A. Meygret, F. Spoto, O. Sy, F. Marchese and P. Bargellini, “Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services,” Remote Sensing of Environment, vol. 120, pp. 25-36, 2012.
[7] E. Medina-Lopez and L. Urena-Fuentes, “High-Resolution Sea Surface Temperature and Salinity in Coastal Areas Worldwide from Raw Satellite Data,” Remote Sensing, vol. 11(19), 2192, 2019.
[8] N.K. Malakar, G.C. Hulley, S.J. Hook, K. Laraby, M. Cook, and J.R. Schott, “An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56(10), pp. 5717-5735, 2018.

How good is research at University of Edinburgh in General Engineering?
(joint submission with Heriot-Watt University)

FTE Category A staff submitted: 91.80

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2020
All rights reserved.