Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  How do individual histone modifications help cells make decisions?


   Biosciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr C Pina, Dr Joanna Bridger  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

We are looking for a highly-motivated, independent-thinking candidate to undertake a PhD project exploring the role of individual histone modifications in nuclear organisation, regulation of transcription, and the process of stem cell fate decisions.

The project is a collaboration between the Pina (https://www.brunel.ac.uk/people/cristina-pina) and the Bridger (https://www.brunel.ac.uk/people/joanna-bridger) labs, with complementary expertise in stem cell biology, nuclear organisation, and single-cell techniques.

You will focus on the histone modifications effected by the epigenetic regulator KAT2A, and the large macromolecular complexes in which it exerts its activity - SAGA and ATAC (Arede and Pina 2021).

The Pina lab recently showed that KAT2A is required to maintain stem cells - normal and malignant - in an undifferentiatied state (Moris et al, 2018; Domingues et al, 2020). In its absence, stem cells start fluctuating their gene transcription and drift away from stemness into differentiation. Kat2a is responsible for acetylation of lysine 9 (K9) of Histone 3 (H3) - H3K9ac. Its macromolecular complexes, SAGA and ATAC, also participate in other histone modifications. In this project, you will be asking how the 2 complexes and their different modifications contribute to stemness through their roles in nuclear organisation and gene transcription.

You will combine CRISPR-Cas9 technologies, imaging techniques, and single-cell analysis to understand nuclear organisation, transcription and cell decision-making in 2D and 3D stem cell systems. If you are a keen lab worker, enjoy a technical challenge, and successfully persevere, we would like to hear from you. To apply, you will need to have a First or Upper Second-class BSc (Hons) degree or equivalent in Biology, Biomedical Sciences, Natural Sciences, Life Sciences, Genetics, Biochemistry or similar areas, and previous lab experience.

An MSc qualification is desirable but not essential. You will have excellent oral and written communication skills, and demonstrate the capacity to autonomously research, synthesise and critically evaluate relevant literature. You should be able to work independently and as part of a team, and have a dedicated and flexible approach to work.


Biological Sciences (4) Engineering (12)

Funding Notes

Brunel offers a number of funding options to research students that help cover the cost of their tuition fees, contribute to living expenses or both. See more information here: https://www.brunel.ac.uk/research/Research-degrees/Research-degree-funding. The UK Government is also offering Doctoral Student Loans for eligible students, and there is some funding available through the Research Councils. Many of our international students benefit from funding provided by their governments or employers. Brunel alumni enjoy tuition fee discounts of 15%.

How good is research at Brunel University London in Allied Health Professions, Dentistry, Nursing and Pharmacy?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.