Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  How does the metabolic status of the plant regulate embryo development and seed viability?


   School of Natural and Environmental Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr V Andriotis, Prof K Lindsey  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

This project will discover how carbohydrate availability regulates embryo development and seed viability in Arabidopsis. Seed growth depends on the interplay between developmental/genetic programmes and carbohydrate supply from the maternal plant. Previous work suggested a link between seed development and viability, and the supply and fate in the seed of maternal carbon [PNAS, 116(2019):15297; Plant J, 64(2010):128; Plant Physiol, 160(2012):1175]. In order for seeds to develop successfully and at maturity be able to establish a new generation, plants must achieve a balance between carbohydrate availability and growth. The importance of this balance is highlighted by the acute sensitivity of reproductive growth to environmental stress (e.g. sudden episodes of drought or heat stress): the large reductions in seed set, filling and viability – key determinants of seed quality and yield, and of the economic value of seed and grain crops – often are a consequence of reduced carbohydrate provision to seeds.

Despite their obvious interdependence, seed growth and primary metabolism have been studied largely in separation. This project will bridge this gap by discovering how developing Arabidopsis embryos respond when carbohydrate availability is reduced. Under our experimental conditions, carbohydrate starvation results in irreversible growth retardation in the embryo, and seed abortion. (1) We will establish when during development carbohydrate starvation is perceived (through confocal microscopy and metabolite analysis). (2) We will focus on the transcriptional response of developing embryos to carbohydrate starvation through global RNAseq, to discover embryo-specific changes in gene expression underpinning the growth retardation and loss of viability under carbohydrate starvation. (3) Targets identified through this approach will be functionally characterised through reverse genetics.

The project will suit an enthusiastic and highly motivated student with a keen interest in developmental biology, plant metabolism, and gene expression analysis. The project will provide expert training in cutting-edge tissue-specific transcriptomics, in bioimaging (Confocal, Differential Interference Contrast optics, bright field and live imaging), biochemistry and biochemical genetics, molecular (DNA/RNA analysis, PCR, cloning, gene expression analysis) and synthetic (e.g. multigene construct assembly into expression vectors) biology, computational biology (e.g. RNAseq analysis and bioinformatics). The student will fully engage with professional development activities and training, part of the BBSRC NLD DTP scheme. The student will benefit from expert, multidisciplinary training, essential for pursuing future career paths in academia and industry, and the wider bioeconomy.

HOW TO APPLY

Applications should be made by emailing [Email Address Removed] with:

·        a CV (including contact details of at least two academic (or other relevant) referees);

·         a covering letter – clearly stating your first choice project, and optionally 2nd ranked project, as well as including whatever additional information you feel is pertinent to your application; you may wish to indicate, for example, why you are particularly interested in the selected project(s) and at the selected University;

·        copies of your relevant undergraduate degree transcripts and certificates;

·        a copy of your passport (photo page).

A GUIDE TO THE FORMAT REQUIRED FOR THE APPLICATION DOCUMENTS IS AVAILABLE AT https://www.nld-dtp.org.uk/how-apply. Applications not meeting these criteria may be rejected.

In addition to the above items, please email a completed copy of the Additional Details Form (as a Word document) to [Email Address Removed]. A blank copy of this form can be found at: https://www.nld-dtp.org.uk/how-apply.

Informal enquiries may be made to [Email Address Removed]. The closing date for applications is 10th January 2022 at 5.00pm (UK time).  

Biological Sciences (4)

Funding Notes

Studentships are funded by the Biotechnology and Biological Sciences Research Council (BBSRC) for 4 years. Funding will cover tuition fees at the UK rate only, a Research Training and Support Grant (RTSG) and stipend. We aim to support the most outstanding applicants from outside the UK and are able to offer a limited number of bursaries that will enable full studentships to be awarded to international applicants. These full studentships will only be awarded to exceptional quality candidates, due to the competitive nature of this scheme.

References

Andriotis VME and Smith AM. The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proceedings of the National Academy of Sciences of the USA (2019) 116: 15297-15306.
Andriotis VME, Pike MJ, Schwarz SL, Rawsthorne S, Wang TL, Smith AM. Altered starch turnover in the maternal plant has major effects on Arabidopsis fruit growth and seed composition. Plant Physiology (2012) 160: 1175-1186.
Spencer MWB, Casson SA, Lindsey K. Transcriptional profiling of the Arabidopsis embryo. Plant Physiology (2007) 143: 924-940.
Andriotis VME, Pike MJ, Bunnewell S, Hills MJ, Smith AM. The plastidial glucose-6-phosphate/phosphate antiporter GPT1 is essential for morphogenesis in Arabidopsis embryos. Plant Journal (2010) 64: 128-139.
Andriotis VME, Pike MJ, Kular B, Rawsthorne S, Smith AM. Starch turnover in developing oilseed embryos. New Phytologist (2010) 187: 791-804.